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An ensemble inverse reinforcement learning for exceeding the expert skills
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Adaboost

Ensemble inverse reinforcement learning from semi-experts® behavior is
proposed. In many inverse reinforcement learning (IRL) problems, the expert agent which has ideal
rewards for achieving the goal is supposed to be existing. However, in real-world problem, the
expert is not always observed. Moreover, the estimated reward function includes the bias depending
on its inherent behavior if the reward for achieving the goal
task is estimated from one agent. In order to overcome the limitation of IRL, we apply Adaboost, one

of ensemble and boosting approach, to IRL and integrate estimated reward functions from semi-expert
agents. To confirm the effectiveness of the proposed method in the grid world including incomplete
areas, we compared the results of reinforcement learning using estimated reward functions and
integrated reward function by simulation. The simulation result shows the proposed method can
estimate the reward

adaptively.
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