(®)
2016 2017

é machine learning based system for storing and processing big spatial-temporal
ata

é machine learning based system for storing and processing big spatial-temporal
ata

Li, Peng

3,000,000

i i During the past two years, we have developed a software prototype for
storing and processing big spatial-temporal data. This system can automatically adjust
configurations according to data characteristics.

i i During the past two years, we have developed a software prototype for
storing and processing big spatial-temporal data. This system can automatically adjust
configurations according to data characteristics.

big data system

big data spatial-temporal data

Due to the prevalence of location sensing
technologies in recent years, there has
been an explosive growth of
spatial-temporal data produced by various
devices, such as GPS, smartphones, and
space telescopes. For example, there are
more than 10 million geo-tagged tweets
issued from Twitter everyday. A NASA
archive of satellite earth images has more
than 500 TB and is increased daily by
25GB. These spatial-temporal data has
unique characteristics. First, they are
inherently skewed in both space and time.
For example, number of tweets submitted
by people changes in different time and
area. Second, data are continuously
generated because the time dimension is
potentially unbounded and monotonically
increase.

More and more companies start to
provide global services by deploying data
centers (DCs) in different counties and
regions. For example, Google runs its
service across several geo-distributed data
centers connected by a dedicated WAN.
Other companies, e.g., Netflix, deploy their
services at Amazon’s global cloud
infrastructure EC2 that spreads across 11
regions over the world. These companies
conduct big data analytics across the
geo-distributed computing and storage
environment for risk evaluation, cost
reduction, and new product creation.

MapReduce has been proposed as a
programming model that parallelizes big
data processing on distributed computing
systems. It decomposes a job into a number
of parallel map tasks, followed by reduce
tasks that merge all intermediate results
generated by map tasks to produce final
results. MapReduce has been implemented
by several open-source software platforms,
e.g., Hadoop [4], which are designed to be
deployed within a single data center. With
this design, a widely adopted approach for
geo-distributed big data analytics is to first
aggregate all data to a single data center,
and then conduct data processing using
Hadoop with traditional single-DC
configuration. This data aggregation
approach would lead to poor efficiency and
high cost for big data workload because a
huge amount of data need to be aggregated,
and the resulting data traffic would occupy
excessive bandwidth of inter-DC network.

The goal of this project is to develop an
intelligent software platform for storing

and processing big spatial-temporal data
based on MapReduce framework. All
existing platforms have fixed system
configuration, and cannot efficiently
handle task scheduling and network traffic
management.

We develop a big spatial-temporal data
platform with two-way interaction between
data and platform using machine learning.
We use Apache Spark as a base system,
and develop a module called ST-controller
that receives knowledge from ML-engine
and uses it to optimize performance. The
ML-engine collects information from data
and applications, and extracts knowledge
of data skew and access patterns using
machine learning technology. This
knowledge will be sent to ST-controller for
performance optimization.

To further optimize the performance, we
design a novel optimization framework by
jointly considering input data movement
and task placement. Input data at a data
center can be loaded by map tasks located
nearby if the remote data loading helps to
reduce total trafficc To guarantee
predictable job completion time, instead of
struggling for accurate estimation of ratio
of input and output data, we apply the
chance-constrained optimization technique
that needs little information about the
distribution of output data. To solve the
formulated problem, we propose an
efficient algorithm by tackling the
following two major challenges. First, the
joint optimization of data movement and
task placement makes the formulated
problem nonlinear. We apply the
linearization technique to equivalently
replace the nonlinear constraints with
linear ones. Second, the chance constraint
imposed to achieve predicted job
completion time cannot be directly solved
by existing convex optimization technique.
We propose an approximation approach by
relaxing the chance constraint, such that
the solution of the new formulation is also
feasible to the original problem.

We divide reduce tasks into six groups, and
set the expected job completion time
(represented by T) to 30 seconds. Therefore,
the practical job completion time of both
algorithms i1s no less than 30 seconds. As
shown in Fig. 1, there are about 60 percent
MapReduce jobs whose shuffling time
exceeds T under the solutions of OPT _exp,

which means their job completion time is
also greater than T. Although fastest
shuffling can finish within 28 seconds, the
worst case needs 36 seconds. In contrast,

OPT_chance can guarantee that the
portion of jobs whose shuffling time
exceeds T 1is always less than the
threshold.
1
09r
(T I
o : ;
Borp ot gh
o H h |
5 08 oo i il
g ; ‘
B oosf i gl
o :
g ;
E osf i
S R
02 B L R » - m = = Opt_exp
I Cog= = OPT_chance,e=0.1
Ll i ol 1l_'l """ P v OPT_chance,e=0.2|]
9 i i i i i
24 26 28 30 32 34 36

Shuffling time

We then study the influence of expected job
completion time T by changing its value
from 20 to 40. The average network traffic
of OPT_exp and OPT_chance is shown in
Fig. 2. The traffic of both algorithms
decreases as the growth of T. As the value
of T becomes smaller, their optimization
framework will adjust input data loading
and task placement such that the
maximum inter-flow time is minimized,
but it would lead to larger traffic.

400 T T
: : == OPT_exp
—}— OPT_chance

-

@
@
=]

LV

Average inter—DG traffic
[%]
=3
o

250 i i i
20 25 30 35 40
The value of T

2
1. Peng Li, Song Guo, Toshiaki Miyazaki,
Xiaofei Liao, Hai Jin, Albert Y. Zomaya,
Kun Wang, “Traffic-aware Geo-distributed
Big Data Analytics with Predictable Job
Completion Time”, |EEE Transactions on
Parallel and Distributed Systems (Impact
Factor: 4.181), vol.28, no.6, pp.1785-1796,

3.

June 1 2017.
Peng Li, Toshiaki Miyazaki, Kun Wang,
Song Guo, and Weihua Zhuang,

“Vehicle-Assist Resilient Information and
Network System for Disaster
Management”, |EEE Transactions on
Emerging Topics in Computing (Impact
Factor: 3.826), vol. 5, no. 3, pp. 438-448,
July-Sept. 2017.

3

Qihua Zhou, Peng Li, Kun Wang, Deze
Zeng, Song Guo and Minyi Guo,
“Swallow: Joint Online Scheduling and
Coflow Compression in Datacenter
Networks”, The 32" |EEE International
Parallel and Didtributed Processing
Symposium (IPDPS).

Deze Zeng, Jie Zhang, Lin Gu, Peng Li,
and Hong Yao, “Minimize Coflow
Completion Time via Joint Optimization
of Flow Scheduling and Processor

Placement”, |EEE Global
Communications Conference
(GLOBECOM), 2017.

Peng Li, Toshiaki Miyazaki, and Song
Guo, “Traffic-aware Task Placement
with Guaranteed Job Completion Time
for Geo-distributed Big Data”, |IEEE
Inter national Conference on
Communications (ICC), Paris, France,
May 2017.

o

@

®

*

LI, Peng

30735915

