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Development of Riemannian conjugate gradient methods and their applications to
large-scale problems
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The generalized Stiefel manifold has important applications including the
canonical correlation analysis. This research proposed a new retraction and its efficient
implementation on this manifold, which is essential in Riemannian optimization methods such as the
conjugate gradient method. As applications to control engineering, this research also proposed new
algorithms for system identification and optimal model reduction problems, some of which are based
on the Riemannian conjugate gradient method. Furthermore, this research generalized stochastic
optimization methods, which are effective for large-scale optimization problems in machine learning
with big data, to Riemannian manifolds together with their convergence analyses and numerical
verification of their performances.
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