研究成果報告書 科学研究費助成事業

6 月 2 0 日現在 令和 元年

機関番号: 15401
研究種目: 若手研究(B)
研究期間: 2016~2018
課題番号: 16K19231
研究課題名(和文)Dual Energy CTを使用した造影剤特定及び線量計算システムの構築
孤穷细晒夕(茶文)Automotic Contract Acont Extraction Suptom with Dual Energy CT
研先課題名(英文)Automatic Contrast Agent Extraction System with Duar Energy Ci
研究代表者
河原 大輔(Kawahara, Daisuke)
広島大学・病院(医)・診療放射線技師
研究者番号:20630461
│ 交付決定額(研究期間全体):(直接経費) 2,600,000円

研究成果の概要(和文):Dual Energy CTを使用することで得られる電子密度、実効原子番号、単色X線CT値な ど様々な情報を使用し、造影剤中の密度、組成について解析し、造影剤濃度と各値の関係より造影剤マップを作 成することで画像より造影剤が存在する領域を同定、及び濃度についても正確に割り当てることが可能なシステ ムを構築した。造影剤特定法の3%以上である2mg/mlにおける線量差は2%以内であり有意な差ではなかった。また 言濃度に洗影剤を含む場合はオシステムを使用すべきことが完成された。本田容は更も少になかった。また 高濃度に造影剤を含む場合は本システムを使用すべきことが示唆された。本研究成果を汎用化できるように検討 を進め、高精度放射線治療における治療計画システムの一部として普及を推進していく。

研究成果の学術的意義や社会的意義 本研究では、造影剤を使用して検査(CT)を行った場合に画像上における造影剤で病変が白く染まった領域を抽 出可能になります。これによって腫瘍のみをしっかりと把握できます。放射線治療においては病変領域に対して 放射線を照射する領域を設定しますが、本造影剤特定システムを使用することで半自動的に腫瘍のみを設定で き、さらに造影剤が含まれる領域は人体に存在する物質とは異なるため造影剤として割り当てて計算を行わなけ れば線量差が生じてしまいます。本システムを使用し造影剤領域をしっかりと判定できれば正確に物質を割り当 てて計算が可能となり、より正確かつ適切な線量投与が可能となります。

研究成果の概要(英文): In dual-energy CT (DECT), various information such as electron density, effective atomic number, and monochromatic X-ray CT value can be obtained. Using this information, we created a contrast agent map. And we constructed a system that allows us to identify the region where the contrast agent is present from the image and to assign the concentration accurately. The dose difference at 2 mg / ml, which is 3% or more of the contrast agent identification method, was within 2% and was not a significant difference. Furthermore, it was suggested that a dose calculation system incorporating a contrast agent identification method should be used if the contrast agent is contained at particularly high concentrations. We will study the results of this research so that it can be generalized, and promote the spread as part of a treatment planning system for high precision radiation therapy.

研究分野:放射線治療

キーワード: 放射線治療 治療計画 造影剤 線量計算 Dual energy CT

様 式 C-19、F-19-1、Z-19、CK-19(共通) 1.研究開始当初の背景

放射線治療計画における線量計算について従来行ってきた方法は、物質は水として CT 画像上 の白から黒までの明暗から密度を割り当てて計算を行っていた(以下グレースケール法)。軟部 組織や臓器などの均質領域では水として計算を行っても大きな差はないが、骨や肺、金属、造 影剤などの不均質領域では密度の割り当てのみでは正確な線量計算は行われない。これは物質 の組成を割り当てることで物質ごとに異なる質量衝突阻止能と質量エネルギー吸収係数の影響 を考慮していないことが原因である。つまり正確な線量計算を行うためには密度に加えて物質 の組成を正確に割り当てる必要がある。さらに不均質物質である造影剤は使用される方法によ り体内での分布が異なり正確な場所及び集積量の同定が非常に困難である。実際に造影剤が治 療計画用 CT 画像上に存在する場合は2つある。

1つ目は、治療計画用 CT 撮影の際に造影剤を注入する場合である。造影剤を注入することで

図 1(b)に示すように画像上のコントラストが明瞭にな り腫瘍の位置、大きさを正確に特定することを目的と する。この場合は治療計画の際に造影剤が存在するが 実際の治療では図 1(a)のように造影剤が存在しない。 2 つ目は、近年では放射線治療を行う前にリピオドー ルなどの造影剤と抗がん剤を混合したものを腫瘍に取 り込ませている場合がある。この場合では造影剤と共 に抗がん剤は腫瘍部分に取り込まれ塞栓されている。

図 2 は治療計画用 CT 画像であるが造影剤部分が赤枠部

図 1; (a)非造影 CT 画像、(b)造影 CT 画像

分となり青が照射野の範囲であるがこの場合、治療の際もこの造影剤は残 存している。

以上の2つの使用方法が存在するため、1つ目では治療計画で存在していた造影剤部分の3次元濃度分布を決定し実際の治療の際と同様な物質組成に割り当てる必要がある。これは今後正確な物質組成の割り当てが行われるようになった場合、造影剤として計算を行うと実際の治療の際との相違が生じるからである。さらに2つ目では治療計画用CTの際も治療の際も造影剤が存在するため造影剤部分を特定し造影剤として物質組成

除も這影剤が存在するにの這影剤部分を特定し這影剤として物質組成の割り当てを行う必要がある。

図 2; 治療計画用 CT 画像

2.研究の目的

Dual Energy CT を使用することで従来より得られていた CT 値情報の他に電子密度、実効原 子番号、単色 X 線 CT 値など様々に情報を得ることが可能である。これらの物質情報を使用し 造影剤中の密度、組成について解析し、造影剤濃度と各値の関係より造影剤マップを作成する ことで画像より造影剤が存在する領域を同定、及び濃度についても正確に割り当てることが可 能なシステムを構築する。さらに構築した造影剤特定法を線量計算システムに組み込み、グレ ースケール法を使用して計算した線量分布と比較し、造影剤特定法の妥当性及び必要性を評価 する。

3.研究の方法

本研究では Dual Energy CT 画像の物質情報の妥当性解析、造影剤特定システムの構築、造影 剤特定システムを利用した臨床画像における線量計算システムの構築の3つに分けて研究を進 めた。

Dual Energy CT 画像の物質情報の妥当性の解析

Dual Energy CT 画像からは物質データとして電子密度、実効原子番号、CT 値(単色 X 線 CT 値、kV-X 線 CT 値)の3種類の情報を得ることができる。今回我々は造影剤特定法を構築する にあたり、これらの3つの情報から物質を特定できるのではないかと考えているため Dual Energy CT によって得られる物質データの精度を解析する。水等価物質、骨等価物質、肺等価 物質などが挿入された CT 電子密度ファントムを Dual Energy CT で撮影し、得られた物質デ ータと理想値を比較する。

造影剤特定システムの構築

図3に示すようにアクリル製の自作ファントム中に様々な造影剤濃度のシリンジを挿入し、電子密度、実効原子番号、CT値値を測定する。得られたデータより造影剤が存在する可能性がある領域を決定する。プログラム上でこの領域に存在する電子密度、実効原子番号、単色X線CT値が存在する場合は造影剤であると判定させ物質を自動的に割り当てる。造影剤については注入速度や残存量によって濃度が異なるため、自作ファントムにおいて濃度を変化させ撮影し、電子密度、実効原子番号、単色X線CT値を測定することで造影剤 濃度マップを作成する。得られたデータより造影剤のみを特定し、かつ造影剤濃度も明らかにするシステムを構築する。

図 3; 自作ファントム

全体的な線量計算システムの構築及び評価を行う。図4にシステムの概略図を示すが、撮影 画像を造影剤特定システム上で自動的に読み込み、造影剤の特定を行う。造影剤の特定は で 作成したものを組み込むが、さらに造影剤部分の物質割り当てを行えるプログラムを追加する。 これは造影剤が実際の治療の際にある場合、ない場合の状況に応じて線量計算を行えるように するためである。そのため物質の割り当ては水等価もしくは造影剤の2種類とし、造影剤特定 後に物質割り当てをこの2種類から選択する。物質組成の割り当てを行った画像を線量計算装 置に転送し線量計算を行う。線量計算については精度の高い線量計算が可能なモンテカルロ計 算を使用する。

図4:造影剤特定法を使用した線量計算システムの概略図

4.研究成果

CT 電子密度ファントムにおける Dual Energy CT 画像 の物質情報の妥当性の解析を図5に示す。電子密度、実効 原子番号において理想値を比較して全て5%以内であった。 また、CT 電子密度ファントム、自作アクリルファントムを 使用した単色X線CT値についてはエネルギーが60-80keV において最も理想値との差は小さくなった。また、エネル ギー40keV の低エネルギーでは各物質のコントラストが明 確となることが明らかとなった。

造影剤特定法については2種類の方法を検討した。

まずは電子密度値と CT 値を組み合わせた造影剤特定法 である。この2つの値の比について CT 電子密度ファント ムに含まれる物質と造影剤について分離できる閾値を決定 した。図6に抽出結果を示す。(a)は CT 画像であり、この 中心部3領域に造影剤が含まれる。既存の装置で造影剤強 調画像を再考することが可能であるためこの画像を(b)に示 す。造影剤特定画像である(c)と比較すると強調画像ではコ

わかる。一方造影剤特定法による再構成画像では造影 剤のみを抽出していることがわかる。造影剤濃度が低 くなるほど特定精度は低下するが 3%以上の特定精度 の誤差が生じたのは造影剤濃度 2mg/ml であった。

次に単色X線CT画像より造影剤特 定法を構築した。使用したエネルギー は40keV,60keVとした。さらに人体 に近いファントム中に造影剤入りの シリンジを挿入したものを使用しよ

り臨床に近い条件での造影剤特定に 取り組んだ。結果を図7に示すがこち らも同様に造影剤強調画像(b)ではコ ントラストは高いが造影剤のみ特定

図5: CT 電子密度ファントムにおける理想値と測

定値の比較(電子密度:上図、実効原子番号:下図

図 6; (a)CT 画像、(b)造影剤強調画像、(c)造影剤特定法 (CT 值-電子密度

はできていない。一方で造影剤特定法を使用した画像(c)では造影剤のみを特定できていること がわかる。

値)を使用した画像

造影剤濃度が低くなるほど特定精度 は低下するが 3%以上の特定精度の誤 差が生じたのは造影剤濃度 1mg/ml で あった。

以上より造影剤特定法に関しては 単色X線CT値を使用した方が造影剤 濃度は低い領域まで高い精度の抽出 率となることが明らかとなった。

上記の造影剤特定法を線量計算シ ステムに組み込み図 8 のように線量 計算を行った。

造影剤特定法の特定精度の誤差が 3% 以上であった造影剤濃度 2mg/ml での 線量差は 2%以内であり、臨床的に有 意な線量差ではなかった。一方、高濃 度の造影剤濃度であるリピオドール を含む場合、リピオドールの有無によ る線量差は 7%程度となった。以上よ り、造影剤特定法の精度の限界が線量 誤差に及ぼす影響は小さく、造影剤を 特に高濃度に含む場合は造影剤特定

本研究成果を汎用化できるように検討 を進め、高精度放射線治療における治療 計画システムの一部として普及を推進 していく。

Contrast medium (10mg/ml)

図 7; (a)CT 画像、(b)造影剤強調画像、(c)造影剤特定法(単色 X 線 CT 値)

図 8;造影剤特定法及びグレースケール法における線量誤差の比較

5.主な発表論文等

〔雑誌論文〕(計8件)

- 1. <u>Kawahara D</u>, Ozawa S, Yokomachi K, Fujioka C, Mori M, Nagata Y, Improving Automatic Contrast-Medium Extraction System Using Monochromatic CT Number. Australasian Physical & Engineering Sciences in Medicine. 査読あり In press
- 2. <u>Kawahara D</u>, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Nakashima T, Ohno Y, Murakami Y and Nagata Y. Photon and electron backscatter dose and energy spectrum analysis around Lipiodol using flattened and unflattened beams. 査読あり J Appl Clin Med Phys. 2019 Mar 18. DOI: 10.1002/acm2.12560
- 3. <u>Kawahara D</u>, Ozawa S, Tanaka S, Yokomachi K, Higaki T, Saito A, Miki K, Fujioka C, Ohno Y, Ohno Y, Kimura T, Murakami Y, Nagata Y. Automatic contrast medium extraction system using electron density data with dual-energy CT. 査読あり Br J Radiol. 2018 Oct;91(1090):20180396. DOI: 10.1259/bjr.20180396
- 4. <u>Kawahara D</u>, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Nakashima T, Ohno Y, Murakami Y and Nagata Y. Effect of secondary electron generation on dose enhancement in Lipiodol with and without a flattening filter. 査読 あり Br J Radiol, 91(1082), 2018. DOI: 10.1002/acm2.12282
- 5. <u>Kawahara D</u>, Nakano H, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Ohno Y, Murakami Y and Nagata Y. Relative biological effectiveness study of Lipiodol based on microdosimetric-kinetic model. Phys Med. 査読あり 46: 89-95, 2018. DOI: 10.1016/j.ejmp.2018.01.018
- 6. <u>Kawahara D</u>, Ozawa S, Yokomachi K, Tanaka S, Higaki T, Fujioka C, Suzuki T, Tsuneda M, Nakashima T, Ohno Y and Nagata Y. Accuracy of the raw-data-based

effective atomic numbers and monochromatic CT numbers for contrast medium with a dual-energy CT technique. 査読あり Br J Radiol, 91(1082), 2018. DOI: 10.1259/bjr.20170524

- 7. <u>Kawahara D</u>, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Hioki K, Nakashima T, Ohno Y, Murakami Y and Nagata Y. Energy spectrum and dose enhancement due to the depth of the Lipiodol position using flattened and unflattened beams. 査読あり Rep Pract Oncol Radiother, 23(1): 50-56, 2018. DOI: 10.1016/j.rpor.2017.12.004
- 8. <u>Kawahara D</u>, Ozawa S, Saito A, Nishio T, Kimura T, Suzuki T, Hioki K, Nakashima T, Ohno Y, Murakami Y and Nagata Y. Dosimetric Impact of Lipiodol in Stereotactic Body Radiation Therapy on Liver after Trans-arterial Chemoembolization. Med Phys. 査読 あり 44(1): 342-348, 2017. DOI: 10.1002/mp.12028

- 1. <u>Kawahara D</u>, Nakano H, Ozawa S, Saito A, Kimura T, Tsuneda M, Hioki K, Masuda H, Ochi Y, Nakashima T, Ohno Y, Murakami Y, Nagata Y. Biological dose enhancement using Lipiodol in liver SBRT after TACE, AAPM 60th Annual Meeting & Exhibition, 2018/7/29-8/2, Nashville (USA)
- <u>Kawahara D</u>, Ozawa S, Tanaka S, Yokomachi K, Saito A, Higaki T, Fujioka C, Tsuneda M, Mori M, Ohno Y, Kimura T, Murakami Y, Nagata Y. Automatic Contrast Medium Extraction System Using Monochromatic CT Number, AAPM 60th Annual Meeting & Exhibition, 2018/7/29-8/2, Nashville (USA)
- 3. <u>Kawahara D</u>, Nakano H, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Ohno Y, Murakami Y, Nagata Y. Relative biological effectiveness and relative dose-rate effect on Lipiodol based on the microdosimetric-kinetic model, ESTRO37, 2018/4/20-24, Barcelona (Spain)
- 4. <u>Kawahara D</u>, Ozawa S, Tanaka S, Yokomachi K, Higaki T, Saito A, Fujioka C, Ohno Y, Ohno Y, Kimura T, Murakami Y, Nagata Y. Contrast medium extraction method using raw-data based electron density with Dual energy-CT, ESTRO37, 2018/4/20-24, Barcelona (Spain)
- 5. <u>Kawahara D</u>, Nakano H, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Ohno Y, Murakami Y and Nagata Y. Accuracy of the effective atomic numbers and theoretical monochromatic CT numbers for contrast medium with raw-data based dual-energy CT, 第 74 回日本放射線技術学会総会学術大会. 2018/4/12-15, 神奈川(日本)
- 6. <u>Kawahara D</u>, Ozawa S, Tanaka S, Yokomachi K, Higaki T, Saito A, Fujioka C, Ohno Y, Kimura T, Murakami Y, Nagata Y. Contrast medium extraction system using direct-electron density- CT number method and dual CT number method with Dual energy-CT, The 3rd International Conference on Radiological Science and Technology (ICRST). 2018/10/21, Hiroshima (Japan)
- <u>Kawahara D</u>, Nakano H, Ozawa S, Saito A, Kimura T, Suzuki T, Tsuneda M, Tanaka S, Ohno Y, Murakami Y, Nagata Y. Relative biological effectiveness study on Lipiodol based on the microdosimetric-kinetic model, 8th Japan-Korea Joint Meeting on Medical Physics, 2017/9/15-17, Osaka
- 8. <u>Kawahara D</u>, Ozawa S, Saito A, Tanaka S, Yokomachi K, Higaki T, Suzuki T, Tsuneda M, Nakashima T, Ochi Y, Okumura T, Ohno Y, Nagata Y. Iodine Extraction Method using Direct-Electron Density and CT value with Dual energy-CT, AAPM 59th Annual Meeting & Exhibition. 2017/7/30-8/3, Denver (USA)
- 9. <u>Kawahara D</u>, Ozawa S, Saito A, Nishio T, Tanaka S, Suzuki T, Hioki K, Okumura T, Ochi Y, Nakashima T, Ohno Y, Nagata Y. Effect of secondary electron generation on dose enhancementin Lipiodol with and without a flattening filter、第 134 回広島大学病院放射線治療技術研究会. 2017/6/17, 広島(日本)
- 10. <u>河原大輔</u>,小澤修一、齋藤明登、田中創大、中島健雄、恒田雅人、鈴木龍彦、大野吉美、 永田靖. Dual Energy CT を用いた造影剤物質特定及び線量計算システム構築に向けた最 適な造影剤抽出方法の検討、第73回日本放射線技術学会総会,2017/04/13-16,神奈川県 (日本)
- 11. <u>Kawahara D</u>, Ozawa S, Saito A, Nishio T, Tanaka S, Suzuki T, Hioki K, Okumura T, Ochi Y, Nakashima T, Ohno Y, Nagata Y. Analysis of DEF and energy spectrum with

[〔]学会発表〕(計 13 件)

PHITS on Lipiodol using the flattened and unflattened photon beams. 第 112 回日本医 学物理学会学術大会, 2016/9/9-10, 沖縄(日本)

- 12. <u>Kawahara D</u>, Ozawa, S, Nagata Y, Saito A, Nishio, T, Suzuki, T, Hioki, K, Masuda, H, Okumura, T, Ochi Y, Nakashima T, Ohno, Y, Tanaka S, Energy Spectral Study On Lipiodol After Trans Arterial Chemoembolization Using the Flattened and Unflattened Photon Beams. AAPM 58th Annual Meeting & Exhibition. 2016/7/31-8/4, Washington (USA)
- 13. <u>Kawahara D</u>, Ozawa S, Hioki K, Suzuki T, Lin Y, Okumura T, Ochi Y, Nakashima T, Ohno Y, Kimura T, Murakami Y, Nagata Y. Lipiodol Impact On Dose Distribution in Liver SBRT After TACE. AAPM 57th Annual Meeting & Exhibition. 2015/7/12-16, California (USA)

〔図書〕(計0件)

〔産業財産権〕 なし

〔その他〕 ホームページ等 なし

6.研究組織

(1)研究分担者 なし

(2)研究協力者 研究協力者氏名:田中創大 ローマ字氏名:(TANAKA, Sodai)