研究成果報告書 科学研究費助成事業

元 年 今和

研究成果の概要(和文):本課題の目的は、150 の変性温度(Td)を持つ超好熱菌由来CutA1に匹敵する熱安定性 を持つ蛋白質を変異導入により創製することである。大腸菌由来CutA1の疎水性変異型(Td =113.2)を鋳型とし て荷電性残基を導入した結果、最も安定性が増加した変異型のTdは142.2 であった。 また、分子動力学(MC Molecular Dynamics)シミュレーションで得られた瞬間構造を用いて評価した結果、各 変異型のTdは静電相互作用エネルギーと比例して増加していることが示唆された。

研究成果の学術的意義や社会的意義

蛋白質は生体を構成する最も重要な成分の一つであるため、熱安定性向上を意図した蛋白質改変は、基礎研 電白貨は主体を構成する最も重要な成为の一つてあるため、熱安定住向上を怠凶した蛋白貨改変は、華碇研究・応用研究両方にとって有用である。本研究では、大腸菌由来CutA1蛋白質に、荷電性残基を変異導入することによって変性温度150 の超安定蛋白質を再現しようと試みた。その際、水溶液中における荷電性残基の挙動を検証するために、分子動力学(MD:Molecular Dynamics)シミュレーションを用いた。その結果、蛋白質の熱安定性における水溶液中での荷電性残基間の静電相互作用の重要性が示唆され、150 に迫る変性温度を持つ蛋白 質を再現することが出来た。

研究成果の概要(英文): The goal was to see if one can achieve the same stability as for a CutA1 from hyperthermophile Pyrococcus horikoshii that has the denaturation temperature (Td) near 150 oC. The hydrophobic mutant of EcCutA1 (EcOVV) with Td of 113.2 oC was used as a template for mutations. The highest stability of multiple mutants was a mutant substituted by 9 charged residues that had Td of 142.2 oC. To evaluate the energy of ion-ion interactions of mutant proteins, we used the structural ensemble obtained by molecular dynamics (MD) simulation at 300K. The Td of ionic mutants linearly increases with the increments of the computed energy of ion-ion interactions for ionic mutant proteins even up to the temperatures near 140 oC, suggesting that ion-ion interactions cumulatively contribute to the stabilization of a protein at high temperatures.

研究分野: 蛋白質工学

キーワード: 蛋白質工学 蛋白質の熱安定性 静電的相互作用 バイオテクノロジー 超好熱菌 DSC

E

1.研究開始当初の背景

蛋白質は生体を構成する最も重要な成分の一つであるため、熱安定性向上を意図した蛋白質 改変の試みは古くから行われてきた。しかし、様々な方針が提案されてきたものの、設計指針 通りには成功していないのが現状である。我々は、変性温度(*T*_d)約 150℃という異常に高い 熱安定性を示す超好熱菌 *Pyrococcus horikoshii* 由来 CutA1(*Ph*CutA1)蛋白質を用いて、荷電性残 基が熱安定化に果たす役割を明らかにした(*FEBS J.* 2012)。さらに、従来推定の域を出なかった 100℃以上の温度領域における疎水性相互作用と静電相互作用による熱安定性への寄与を熱力 学的に解析した(*Sci. Rep.* 2015)。これらの結果より、特に 100℃を超える高温領域では、蛋白 質の熱安定化にとって静電相互作用が重要であることが示唆された。

CutA1 は大腸菌で最初に同定されており、様々な生物種に保存されていることが分かっている。CutA1 の機能は未だよく分かっていないが、種々の生物種に由来する CutA1 の立体構造が 既に解析されており、同ーサブユニットからなる3量体構造であることが分かっている。CutA1 共通の立体構造が、生育至適温度を遥かに超える高い熱安定性を保持している理由と思われる。 このため、常温生物由来の CutA1 ですら T_dが 100℃近くになる。

現状として、分子内部への疎水性残基導入による耐熱化の場合と比較すると、荷電性残基導入による耐熱化は予測精度が低い。それは、イオン結合導入による蛋白質の耐熱化に際しては、 揺らぎの大きい分子表面が置換対象となる場合が多いためであると考えられる。安定化予測を 行う際には結晶構造を用いることが多いが、結晶構造は準安定状態の静止した構造であるため、 水中におけるアミノ酸残基同士の相互作用が実際と著しく異なる場合がある。本課題では、分 子動力学(MD:<u>Molecular Dynamics</u>)シミュレーションを用いることでこの問題の解決を目指した。

2.研究の目的

本課題では、主に荷電性残基を導入することによって、常温生物である大腸菌由来 CutA1(*Ec*CutA1: *T*_d=90°C)の熱安定性を超好熱菌の熱安定性(*Ph*CutA1: *T*_d=150°C)にまで増加さ せることで、静電相互作用強化による蛋白質の耐熱化を立証する。その際、分子動力学(MD) シミュレーションによる蛋白質内の荷電性残基の揺らぎ情報を用いることによって、荷電性残 基導入による普遍的な蛋白質の熱安定化設計指針の確立を目指す。

3.研究の方法

本課題では、これまでの研究で得られた野生型と比較して T_d が約 26°C上昇し、熱可逆性が 良好に改善された *Ec*CutA1 変異型 (*Ec*0VV: *Ec*CutA1 C16A/C39A/C79A/S11V/E61V T_d =115°C) を鋳型蛋白質として用い、荷電性残基導入により *Ph*CutA1(T_d =150°C)の T_d まで増加させる。

まず初めに、荷電性残基を一残基変異導入した変異型を網羅的に作製し、熱安定性の変化を DSC (\underline{D} ifferential <u>S</u>canning <u>C</u>alorimeter: 示差走査熱量計)にて測定することで評価した。熱可逆性を示した変異型に関しては、変性に伴う ΔH が半分となる温度を T_a とし、熱可逆性を示さなかった変異型に関しては、変性曲線の頂点温度を T_a とした。一残基変異型は、FoldX, SPMP などの安定化予測プログラムや、二次構造のヘリックス双極子モーメント、超好熱菌由来 CutA 1 蛋白質とのアミノ酸比較など様々な方法によって選出した。また、複数の変異を組み合わせた多重変異型を作製し、熱安定性を同様に評価した。

鋳型となる EcOVV 変異型の構造は、既に立体構造が解かれている EcOSH(EcCutA1 C16A/C39A/C79A)変異型の構造データ(PDB ID: 4Y65)を用い、欠損している N 末端領域と S11V/E61V 変異をモデリングすることで取得した。次に、鋳型である EcOVV 変異型と安定性が増加した荷電性残基変異型に関して、モデリングした構造を用いて MD シミュレーションを 行った。MD シミュレーションは、インターネット上で公開されている GROMACS を使用し、 300K, 40 nano-sec 行った。得られた MD データに関して、FoldX によって静電相互作用の増減 を評価し、蛋白質の熱安定性変化との関連性を検討した。

4.研究成果

(1) 荷電性残基導入変異型の熱安定性変化

熱安定化を期待して作製した一残基変異型 83 種類の安定性を評価した結果、安定性が増加した変異型($\Delta T_{\rm d}$ >+0.5 °C)は 37、安定性が低下した変異型($\Delta T_{\rm d}$ <-0.5 °C)は 31、安定性に変化が生じなかった変異型(-0.5 °C< $\Delta T_{\rm d}$ <+0.5 °C)は 15 種類得られた(Table 1A)。

変異導入によって安定化した変異型の多くは、正荷電残基変異型であった。これは EcOVV の等 電点(pI)が 4.98 であり、もともと酸性残基の比率が高い蛋白質であったことに起因している。

さらに安定性を増加させるために、Ec0VVに多重変異を導入した(Table 1B)。Ec0VVQ87K/T88Rで T_d が+9.2°C、Ec0VVH72K/Q87K/T88R変異型で+14.3°C、Ec0VVH72K/S82K/Q87K/T88R変異型で+18.3°C程度増加した。さらに、Ec0VVA39D/S48K/H72K/S82K/Q87K/T88R($Ec0VV_6$)変異型では T_d =136.8°C(+23.6°C)であった。また、Ec0VV6にさらに3つの変異を導入した $Ec0VV_9$ (Ec0VV_Q25R/A39D/S48K/H72K/S82K/Q87K/T88R/T101E/N108E)の T_d は142.2°Cであった。これは、Ec0VVと比較して T_d が29.0°C増加、野生型と比較して52.3°C増加したことになる。

Table 1 EcOVV 荷電性残基変異型蛋白質の変性温度

(A) 一残基変異型

ECOVV H72K 118.4 a 0.4 5.2 ECOVV H72K 118.1 a 0.3 4.9 ECOVV H72K 118.1 a 0.3 4.9 ECOVV H72K 118.1 a 0.3 4.9 ECOVV EGR 117.6 a 0.3 4.9 ECOVV EGR 117.6 a 0.3 4.4 ECOVV STR 117.6 a 0.4 4.1 ECOVV ASSR 117.1 a 0.5 3.7 ECOVV ASSK 118.0 a 0.5 3.6 C 0.0 0.7 ECOVV ASSK 118.0 a 0.1 2.8 ECOVV ASSK 113.0 a 0.1 0.0 0.1 1.3 <th>Mutants</th> <th>T</th> <th>, (°C</th> <th>)</th> <th>∆ T _d (°C)</th> <th>Mutants</th> <th>Ta</th> <th colspan="2">Τ_d (°C)</th> <th colspan="2"><i>T_d</i> (°C)</th> <th colspan="2">T_d (°C) ΔT_d (</th> <th>∆ T _d (°C)</th> <th>Mutants</th> <th>Td</th> <th>, (°C</th> <th>)</th> <th>∆T_d (°C</th>	Mutants	T	, (°C)	∆ T _d (°C)	Mutants	Ta	Τ _d (°C)		<i>T_d</i> (°C)		T_d (°C) ΔT_d (∆ T _d (°C)	Mutants	Td	, (°C)	∆T _d (°C
ECOVV ESR 118.1 2 3.3 4.9 ECOV D26K 114.2 2 0.1 1.0 ECOVV F17R 118.0 2 0.3 4.9 ECOVV C25K 117.6 2 0.4 4.0 ECOVV C25K 114.2 2 0.1 1.0 ECOVV S11 17.3 2 0.4 4.1 ECOVV C25K 114.4 2 0.2 0.0 1.4 ECOVV S2K 117.1 2 0.4 4.1 ECOVV A3K 114.1 2 0.0 0.0 0.0 ECOVV S2K 117.1 2 0.4 4.1 ECOVV A3K 114.1 2 0.0 0.0 ECOVV S2K 116.3 2 3.5 3.6 ECOVV A3K 114.0 2 0.0 0.0 ECOVV S2K 116.0 2 2.8 3.7 ECOVV A3K 113.0 2 0.0 0.0 1.1 ECOVV S2K 116.0 2 2 2 2 2	Ec0VV H72K	118.4	±	0.4	5.2	Ec0VV A109R	114.2	±	0.1	1.0	Ec0VV A33E	112.3	±	0.2	-0.9				
EOUV H72R H180 s 0.2 4.8 EOUV CORN H176 s 0.2 4.8 EOUV STIC H176 s 0.0 4.4 EOUV STIC H176 s 0.0 4.4 EOUV STIC H176 s 0.0 4.4 EOUV STIC H173 s 0.4 4.1 EOUV STIC H142 s 0.2 0.0 0.0 EOUV STIC H173 s 0.4 4.1 EOUV CONSTIC H144 s 0.2 0.0 0.0 EOUV STIC H173 s 0.4 4.1 EOUV CONSTIC H144 s 0.0 0.0 EOUV STIC H168 s 0.3 3.5 EOUV A28K H13.4 s 0.0 0.0 EOUV STIC H168 s 0.3 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	EcOVV E57R	118.1	±	0.3	4.9	Ec0VV D26K	114.2	±	0.1	1.0	Ec0VV A29E	112.3	±	0.1	-0.9				
ECOVV ESK 117.6 2 0.0 4.4 ECOVV STR 117.6 2 0.6 4.4 ECOVV STR 117.6 2 0.6 4.4 ECOVV STR 117.6 2 0.6 4.4 ECOVV STR 117.1 2 0.6 4.4 ECOVV STR 117.1 2 0.6 3.9 ECOVV ASR 114.0 2 0.0	Ec0VV H72R	118.0	±	0.2	4.8	Ec0VV Q25R	114.2	±	0.1	1.0	Ec0VV Q74E	112.2	±	0.2	-1.0				
ECOVV TABR 117.6 1 0.6 4.4 ECOVV ASIR 117.1 1 0.6 4.4 ECOVV ASIR 117.1 1 0.4 4.1 ECOVV ASIR 117.1 1 0.5 3.8 ECOVV ASIR 117.1 1 0.5 3.7 ECOVV ASIR 117.1 1 0.5 3.8 ECOVV ASIR 116.8 1 0.5 3.8 ECOVV ASIR 113.0 1 0.1 0.1 1.1 ECOVV ASIR 116.0 1 2 2 3.7 ECOVV ASIR 113.0 1 0.1 0.1 1.1 ECOVV ASIR 116.0 1 2 2 2 1.1 <t< td=""><td>Ec0VV E57K</td><td>117.6</td><td>±</td><td>0.0</td><td>4.4</td><td>Ec0VV S110K</td><td>114.2</td><td>±</td><td>0.2</td><td>1.0</td><td>Ec0VV S48K</td><td>112.2</td><td>±</td><td>0.9</td><td>-1.0</td></t<>	Ec0VV E57K	117.6	±	0.0	4.4	Ec0VV S110K	114.2	±	0.2	1.0	Ec0VV S48K	112.2	±	0.9	-1.0				
ECOVV S10R 117.3 2 0.4 4.1 ECOVV G2R 117.1 2 0.4 4.1 ECOVV G2R 117.1 2 0.4 4.1 ECOVV G2R 117.1 2 0.5 3.9 ECOVV G2R 117.1 2 0.5 3.9 ECOVV G2R 116.0 2 2.8 3.7 ECOVV G2R 116.1 2 0.5 3.7 ECOVV A28K 116.0 2 2.8 5.8 ECOVV A28K 113.7 2 0.1 0.5 ECOVV G28K 116.0 2 2 2.8 ECOVV A28K 113.8 2 0.1 0.5 ECOVV G28K 116.0 2 2 2.8 ECOVV A28K 113.8 2 0.1 0.3 ECOVV G28K 116.7 2 2 2.8 2 1.3 2 0.1 0.1 ECOVV A28K 115.7 1 0.1 2.8 0.0 0.1 0.1	EcOVV T88R	117.6	±	0.6	4.4	Ec0VV A33R	114.1	±	0.2	0.9	Ec0VV S7K	112.1	±	0.1	-1.1				
ECOVV S2R 117.1 1 5 3.9 ECOVV A3X 114.0 2 0.2 0.8 ECOVV GAR 117.1 2 0.5 3.9 ECOVV A3X 114.0 2 0.2 0.8 ECOVV GAR 117.1 2 0.5 3.9 ECOVV A3X 113.9 2 0.1 0.7 ECOVV GAR 116.8 2 0.5 3.7 ECOVV A3X 113.9 2 0.1 0.7 ECOVV MBK 116.0 2 0.2 2.9 ECOVV A3R 113.8 2 0.1 0.1 2.0 ECOVV MBK 116.0 2 0.2 2.8 ECOVV A3R 113.8 2 0.1 0.1 0.1 2.0 ECOVV MBK 116.0 2 0.1 2.8 ECOVV A3RK 113.8 2 0.1 0.1 2.0 4.0 ECOVV MBK 115.7 2 0.1 2.8 ECOVV A3RK 113.4 0.1 0.1 0.1 4.0 <td>Ec0VV S110R</td> <td>117.3</td> <td>±</td> <td>0.4</td> <td>4.1</td> <td>Ec0VV Q58K</td> <td>114.0</td> <td>±</td> <td>0.0</td> <td>0.8</td> <td>Ec0VV S48R</td> <td>112.1</td> <td>±</td> <td>0.1</td> <td>-1.1</td>	Ec0VV S110R	117.3	±	0.4	4.1	Ec0VV Q58K	114.0	±	0.0	0.8	Ec0VV S48R	112.1	±	0.1	-1.1				
ECOVV OR7R 117.1 s 0.2 3.9 ECOVV S10S 113.9 s 0.1 0.7 ECOVV S71E 111.8 s 0.1 1.1 ECOVV CARX 116.9 s 0.5 3.7 ECOVV CARX 113.9 s 0.1 0.7 ECOVV CARX 111.8 s 0.1 1.1 ECOVV CARX 116.1 s 0.5 3.7 ECOV CARX 113.7 s 0.1 0.7 ECOVV CARX 111.7 s 0.1 0.1 1.1 ECOVV TORK 116.0 s 0.1 2.2 2.0 4.0 0.1 0.1 2.0 1.1 1.1 0.0 1.1 1.1 0.0 1.1 1.1 0.0 1.1 1.1 0.0 1.1 1.1 0.0 1.1 1.1 0.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 <td>EcoVV S82R</td> <td>117.1</td> <td>±</td> <td>0.5</td> <td>3.9</td> <td>Ecovv A33K</td> <td>114.0</td> <td>±</td> <td>0.2</td> <td>0.8</td> <td>Ecovv Q25E</td> <td>112.0</td> <td>±</td> <td>0.1</td> <td>-1.2</td>	EcoVV S82R	117.1	±	0.5	3.9	Ecovv A33K	114.0	±	0.2	0.8	Ecovv Q25E	112.0	±	0.1	-1.2				
ECOVV SIZE 116.0 2 0.5 3.7 ECOVV A22X 113.8 2 0.0 0.7 ECOVV COSE 111.6 2 0.1 1.4 ECOVV A27X 116.8 2 0.5 3.6 ECOVV A22X 113.8 2 0.0 0.7 ECOVV A23K 116.0 2 0.1 0.1 0.1 2.8 ECOVV SIRK 116.0 2 0.1 2.8 ECOVV A23K 113.8 4 0.1 0.1 0.3 2.3 2.0 4.0 2.0 4.0 ECOVV SIRK 115.0 1 0.1 2.8 ECOVV A23K 113.1 4 0.1 0.1 2.8 ECOVV A23K 113.1 4 0.1 0.1 2.01 4 0.1 0.1 2.0 4 0.1 0.1 4 0.1 0.1 4 0.0 0.1 4 0.0 0.1 4 0.1 0.1 4 0.1 0.1 4 0.1 0.1 4	Ec0VV Q87R	117.1	±	0.2	3.9	Ec0VV S105K	113.9	±	0.1	0.7	Ec0VV S71E	111.8	±	0.1	-1.4				
ECOVV 02RK 118.8 1.0 3.8 ECOVV A39K 113.7 2 0.1 0.5 ECOVV 707E 111.5 2 0.0 1.1.7 ECOVV 708K 116.1 2 0.2 2.9 ECOVV A10R 113.6 2 0.1 0.1 2.3 2.0 2.0 ECOVV A10R 113.6 2 0.1 0.1 2.0 </td <td>Ecovv S82K</td> <td>116.9</td> <td>±</td> <td>0.5</td> <td>3.7</td> <td>Ecovv A22K</td> <td>113.9</td> <td>±</td> <td>0.0</td> <td>0.7</td> <td>Ecovv Q58E</td> <td>111.6</td> <td>±</td> <td>0.1</td> <td>-1.6</td>	Ecovv S82K	116.9	±	0.5	3.7	Ecovv A22K	113.9	±	0.0	0.7	Ecovv Q58E	111.6	±	0.1	-1.6				
Ecovy Task 1161 1 0.2 2.9 Ecovy ATAR 113.8 2 0.2 0.4 Ecovy Task 1160 2 0.2 2.9 Ecovy ATAR 113.8 2 0.4 Ecovy ATAR 110.6 2 0.3 2.2 Ecovy Task 1160 2 0.2 2.8 Ecovy ATAR 113.8 2 0.1 0.4 Ecovy Task 1160 2 0.1 2.8 Ecovy ATAR 113.4 2 0.1 0.1 Ecovy ATAR 10.0 5 1.1 4 0.1 0.0 0.1 Ecovy ATAR 115.7 2 0.1 2.3 Ecovy ATAR 113.1 4 0.0 0.1 Ecovy ATAR 10.8 4 0.0 0.1 Ecovy ATAR 115.5 2 0.1 2.3 Ecovy ATAR 113.0 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0<	Ec0VV Q87K	116.8	±	0.5	3.6	Ec0VV A29K	113.7	±	0.1	0.5	Ec0VV V70E	111.5	±	0.0	-1.7				
ECOVV NIDEK 1150 1 2 2.8 ECOVV A23R 113.6 1 0.4 ECOVV V70R 100.5 1 0.8 3.3 ECOVV STR 1160 1 0.1 2.8 ECOVV A23R 113.5 1 0.1 2.8 ECOVV A79K 113.5 2 0.1 0.1 3.8 2 0.1 0.1 3.8 2 0.1 0.1 3.8 2 0.1 0.1 3.8 2 0.1 0.1 3.1 3.1 2 0.1 0.1 3.0 4 0.1 0.1 0.1 3.0 4 0.1 0.1 0.1 3.0 4 0.1 0.1 1.0 1.3 4 0.1 0.1 1.0 1.0 1.3 4 0.1 0.1 1.0 1.3 4 0.1 0.1 1.0 1.3 4 0.1 0.1 1.0 1.3 4 0.1 0.1 1.0 1.0 1.0 <th1.0< th=""> 1.0 <t< td=""><td>EcOVV T88K</td><td>116.1</td><td>±</td><td>0.2</td><td>2.9</td><td>Ec0VV A10R</td><td>113.6</td><td>±</td><td>0.2</td><td>0.4</td><td>Ec0VV A75E</td><td>110.5</td><td>±</td><td>0.3</td><td>-2.7</td></t<></th1.0<>	EcOVV T88K	116.1	±	0.2	2.9	Ec0VV A10R	113.6	±	0.2	0.4	Ec0VV A75E	110.5	±	0.3	-2.7				
ECOVV STR 1160 1 2.8 ECOVV TOTR 113.5 1 0.1 2.8 ECOVV STK 1160 2 0.1 2.8 ECOVV TOTR 113.4 2 0.2 0.5 2 4.0 3.3 ECOVV STK 115.7 2 0.1 2.8 ECOVV ATRK 113.1 2 0.1 0.0 2 4.0 3.3 ECOVV STK 115.7 2 0.1 2.5 ECOVV ATRK 113.1 2 0.1 0.1 4.0	EcOVV N108K	116.0	±	0.2	2.8	Ec0VV A29R	113.6	±	0.1	0.4	Ec0VV V70R	109.5	±	0.8	-3.7				
ECOVV E3K 116.0 2 0.1 2.8 ECOVV A79K 113.4 2 0.2 0.2 4.0 ECOVV A79K 115.7 2 0.2 2.5 ECOVV A79K 113.1 2 0.1 -0.1 ECOVV S10R 115.7 2 0.2 2.5 ECOVV ESR 113.1 2 0.1 -0.1 ECOVV S10R 115.7 2 0.2 2.5 ECOVV ESR 113.1 2 0.1 -0.1 ECOVV S10R 115.5 2 0.1 2.5 ECOVV A27K 113.1 2 0.1 -0.1 ECOVV A10F 115.5 2 0.2 2.4 ECOVVA27K 10.6 -0.2 ECOVV A10F 115.3 2 0.1 2.5 ECOVVA27K 10.7 2 0.1 -0.1 ECOVV A10F 115.3 2 2 2 0.0 -0.3 ECOVV 107K 100.7 2 0.1 -5.1 ECOVV A10K 112.7 2	Ec0VV S71R	116.0	±	0.1	2.8	Ec0VV T101R	113.5	±	0.1	0.3	Ec0VV A33D	109.5	±	0.1	-3.7				
ECOVV S108 115.7 2 0.2 2.5 ECOVV ES3R 113.1 2 0.1 -0.1 ECOVV K31R 0.01 2 0.1 -4.7 ECOVV S108 115.7 2 0.3 2.5 ECOVV K21R 113.1 2 0.1 -0.1 ECOVV C31R 108.7 2 0.1 -0.3 -0.4 ECOVV M3R 115.5 2 0.1 2.5 ECOVV AGE 113.1 2 0.0 -0.1 ECOVV AGE 10.8 2 0.0 -0.2 ECOVV MORE 115.5 2 0.1 2.1 ECOVV AGE 112.9 2 0.0 -0.3 ECOVV MORE 115.3 2 0.1 2.1 ECOVV TESK 112.7 2 0.0 -0.3 ECOVV MORE 115.3 2 0.1 2.1 ECOVV TESK 112.7 2 0.0 -0.3 ECOVV MAR 115.0 2 0.1 2.1 ECOVV TESK 112.7 2 0.0 -0	ECOVV E34K	116.0	±	0.1	2.8	Ecovv A79K	113.4	±	0.2	0.2	Ecovv A79E	109.2	±	0.2	-4.0				
ECOVV STK 115.7 i 0.3 2.5 ECOVV L2E 113.1 i 0.1 -0.1 ECOVV C73E 008.5 i 0.3 4.4 ECOVV STK 115.7 i 0.1 2.5 ECOVV V60E 113.1 i 0.1 -0.1 ECOVV A38K 108.7 i 0.1 2.6 ECOVV MBR 115.5 i 0.1 2.5 ECOVV A10E 113.1 i 0.6 -0.1 ECOVV A38K 108.7 i 0.1 4.1 ECOVV MORE 115.5 i 0.1 2.1 ECOVV A10E 113.0 i 0.6 -0.3 ECOVV A38K 107.7 i 0.1 -5.1 ECOVV MORE 115.3 i 0.1 2.1 ECOV TORK 112.7 i 0.0 -0.3 ECOVV MARK 115.3 i 0.1 2.1 ECOV CARK 112.7 i 0.0 -0.5 ECOVV MARK 115.0 i 0.2 1.8 ECOV	EcOVV S105R	115.7	±	0.2	2.5	Ec0VV E53R	113.1	±	0.1	-0.1	Ec0VV K81R	109.1	±	0.1	-4.1				
ECOVY E3M 1157 i 0.1 2.5 ECOVY MBD 115.5 i 0.1 2.5 ECOVY MBD 115.5 i 0.1 2.4 ECOVY MBD 115.5 i 0.1 2.4 ECOVY MIDE 115.3 i 0.2 2.4 ECOVY AVR 115.3 i 0.1 2.1 ECOVY TOP 112.8 i 0.0 -0.1 ECOVY OTSK 107.7 i 0.0 -5.4 ECOVY AVR 115.3 i 0.1 2.1 ECOVY TOPK 112.8 i 0.0 -0.3 ECOVY OSK 107.5 i 0.2 0.1 -5.1 ECOVY ASR 115.3 i 0.1 2.1 ECOVY TOPK 112.7 i 0.0 -0.5 ECOVY WASR 115.0 i 0.2 1.2 ECOVY TOPK 112.7 i 0.0 -0.5 ECOVY WASR 114.5 i 0.1 0.2 12.2 i 0.	EcoVV S71K	115.7	±	0.3	2.5	EcoVV L2E	113.1	±	0.1	-0.1	Ecovv Q73E	108.8	±	0.3	-4.4				
ECOV_MBD 1156 i 0.0 2.4 ECOV_MDR 115.5 i 0.1 2.3 ECOV_MDR 115.5 i 0.1 2.3 ECOV_MDR 115.5 i 0.1 2.3 ECOV_MDR 115.3 i 0.1 2.3 ECOV_MDR 115.3 i 0.1 2.3 ECOV_MDR 115.3 i 0.1 2.1 ECOV_MDR 115.2 i 0.0 -0.3 ECOV_VDRR 112.7 i 0.0 -0.5 ECOV_VDRR 112.7 i 0.0	EcOVV E34R	115.7	±	0.1	2.5	Ec0VV Y60E	113.1	±	0.0	-0.1	Ec0VV A39K	108.7	±	0.0	-4.5				
ECOVV NORR 1155 i 0.1 2.3 ECOVV A22R 112.9 i 0.0 -0.3 ECOVV T97K 007.7 i 0.0 -5.4 ECOVV TATK 115.3 i 0.1 2.1 ECOVV T07E 112.8 i 0.0 -0.3 ECOVV T97K 007.7 i 0.0 -5.4 ECOVV TATK 115.3 i 0.1 2.1 ECOVV T07E 112.8 i 0.0 -0.3 ECOVV T80K 107.6 i 0.2 -5.5 ECOVV OXX 115.2 i 0.1 2.1 ECOVV T80K 112.7 i 0.0 -0.5 ECOVV T30K 107.8 i 0.2 -6.5 ECOVV OX3K 115.0 i 0.2 1.8 ECOVV C30K 112.7 i 0.0 -0.5 ECOVV W3SK 114.4 i 0.2 1.7 ECOVV C30K 112.7 i 0.0 -0.5 ECOVV W3SE 114.4 i 0.3 1.7 <	EcOVV H98D	115.6	±	0.0	2.4	Ec0VV A10E	113.0	±	0.6	-0.2	Ec0VV Q73K	108.1	±	0.1	-5.1				
ECOVV TATK 115.3 2 0.2 2.1 ECOVV TOPE 112.9 4 0.0 -0.3 ECOVV TOPO 007.5 2 0.2 -5.3 ECOVV TOWE 115.3 a 0.1 2.1 ECOVV TOPO 112.7 a 0.0 -0.3 ECOVV ASR 107.0 a 0.1 4.0 1.6 ECOVV TOPK 115.3 a 0.1 2.1 ECOVV TOPK 112.7 a 0.0 -0.4 ECOVV ASR 107.0 a 0.1 4.0 4.0 ECOVV TOPK 115.0 a 0.1 2.1 ECOVV TOPK 112.7 a 0.0 -0.5 ECOVV ASR 106.4 a 0.2 7.7 ECOVV TOPK 112.8 a 0.0 -0.5 ECOVV ASR 106.4 a 0.2 7.7 ECOVV TOPK 112.4 a 0.2 -0.7 ECOVV ASR 102.3 a 0.1 -0.0 ECOVV TOPK 112.4 a 0.	Ec0VV N108R	115.5	±	0.1	2.3	Ec0VV A22R	112.9	±	0.0	-0.3	Ec0VV T97K	107.7	±	0.0	-5.5				
ECOVV NOBE 115.3 i 0.1 2.1 ECOVV T69K 112.8 i 0.0 -0.4 ECOVV A38R 107.0 i 0.1 -0.4 ECOVV A75R 115.3 i 0.1 2.1 ECOVV A10K 112.7 i 0.1 -0.4 ECOVV 045K 106.3 i 0.4 6.6 ECOVV A25K 115.0 i 0.2 COVV 045K 107.0 i 0.4 6.6 ECOVV 045K 115.0 i 0.2 COVV 045K 106.4 i 0.7 2 0.0 -0.5 ECOVV 045K 114.9 i 0.3 1.7 ECOVV 127K 112.5 i 0.2 -0.7 ECOVV 045K 114.4 i 0.2 1.2 ECOVV A106K 112.4 i 0.2 -0.7 ECOVV 045K 114.4 i 0.2 1.2 ECOVV A106K 112.3 i 0.0 -0.5 ECOVV 045K 114.4 i 0.4 1.	Ec0VV T47K	115.3	±	0.2	2.1	Ec0VV T97E	112.9	±	0.0	-0.3	Ec0VV T69D	107.5	±	0.2	-5.7				
ECOVV ASR 1153 s 0.1 2.1 ECOVV ADIX 112.7 s 0.1 -0.5 ECOVV G4SK 106.3 s 0.4 -6.5 ECOVV ASR 115.0 s 0.0 2.0 ECOVV ADIX 112.7 s 0.1 -0.5 ECOVV G4SK 105.4 s 0.4 -6.5 ECOVV MSR 114.9 s 0.3 1.7 ECOVV 248 10.2 -0.5 ECOVV G4SK 106.4 s 0.5 C ECOVV MSR 114.4 s 0.2 1.2 ECOVV ADIX 112.7 s 0.0 -0.5 ECOVV G4SK 10.6 4.5 0.5 C 7.1 ECOVV MSR 114.4 s 0.2 1.2 ECOVV ADIX 112.7 s 0.0 -0.5 ECOVV G4SK 10.6 0.6 1.1 ECOVV G4SK 10.6 0.1 0.0 0.1 ECOVV G4SK 10.2 0.1 0.0 0.0 0.1 0.1 0.0 0.1	ECOVV N108E	115.3	±	0.1	2.1	Ecovv T69K	112.8	±	0.0	-0.4	Ecovv A39R	107.0	±	0.1	-6.2				
Ecoviv Q284 115.2 i 0.0 2.0 Ecoviv Espk 112.7 i 0.0 -0.5 Ecoviv S48D 105.4 i 0.2 7.1 Ecoviv WGXK 115.0 i 0.2 1.8 Ecoviv C24K 112.7 i 0.0 -0.5 Ecoviv A38D 106.4 i 0.5 7.4 Ecoviv WGXK 114.9 i 0.3 1.7 Ecoviv A108E 112.4 i 0.2 -0.7 Ecoviv A38D 106.4 i 0.0 -0.1 Ecoviv G38K 114.4 i 0.2 1.2 Ecoviv A109E 112.4 i 0.2 -0.7 Ecoviv G38K 114.4 i 0.2 1.2 Ecoviv A109E 112.4 i 0.1 -0.9 Ecoviv G38K 114.4 i 0.3 1.2 Ecoviv H38K 112.3 i 0.1 -0.9 Ecoviv G38K 114.4 i 0.3 1.2 Ecoviv H38K 112.3 i 0.1 <td< td=""><td>EcOVV A75R</td><td>115.3</td><td>±</td><td>0.1</td><td>2.1</td><td>Ec0VV A10K</td><td>112.7</td><td>±</td><td>0.1</td><td>-0.5</td><td>Ec0VV G45K</td><td>106.3</td><td>±</td><td>0.4</td><td>-6.9</td></td<>	EcOVV A75R	115.3	±	0.1	2.1	Ec0VV A10K	112.7	±	0.1	-0.5	Ec0VV G45K	106.3	±	0.4	-6.9				
EcovV WS2K 115.0 i 0.2 1.8 EcovV Q74R 112.7 i 0.0 -0.5 EcovV WS2R 114.9 i 0.3 1.7 EcovV Q74R 112.7 i 0.0 -0.5 EcovV WS2R 114.4 i 0.2 1.2 EcovV A106 112.4 i 0.2 -0.7 EcovV G05K 114.4 i 0.2 1.2 EcovV A106 112.4 i 0.2 -0.6 EcovV G05K 114.4 i 0.4 1.2 EcovV S6R 112.3 i 0.1 -0.9 EcovV H3K 112.4 i 0.2 0.1 -0.9 EcovVH72D 96.3 i 0.2 i.0 EcovV H3K 112.3 i 0.1 -0.9 EcovVH72D 96.3 i 0.2 i.0	Ecovv Q25K	115.2	±	0.0	2.0	Ecovv E59K	112.7	±	0.0	-0.5	Ecovv S48D	105.4	±	0.2	-7.8				
ECOVV VISSR 114.9 i 0.3 1.7 ECOVV L2R 112.5 i 0.2 -0.7 ECOVV H7ZE 102.4 i 0.0 -10. ECOVV SIDSE 114.4 i 0.2 1.2 ECOVV A106E 112.4 i 0.2 0.0 10. ECOVV A10E 112.4 i 0.2 0.0 -10. ECOV SIDE 114.4 i 0.2 1.2 ECOV SIGE 112.4 i 0.1 -0.0 ECOV SIGE 12.4 i 0.1 -0.0 ECOV SIGE i 0.1 -0.0 I 0.0 -0.0	Ec0VV W52K	115.0	±	0.2	1.8	Ec0VV Q74R	112.7	±	0.0	-0.5	Ec0VV A39D	105.4	±	0.5	-7.8				
Econv 105E 114.4 a 0.2 1.2 Econv Atoge 112.4 a a a 0.2 a 0.5 1.1 Econv Atoge 114.4 a 0.4 1.2 Econv Atoge 10.1 0.5 0.5 4.0 1.2 Econv Atoge 114.4 a 0.4 1.2 Econv Atoge 10.1 0.5 0.5 4.0 1.6 Econv Atoge 114.4 a 1.2 Econv Heat 112.3 a 0.1 0.5 4.0 1.2 1.6	Ec0VV W52R	114.9	±	0.3	1.7	Ec0VV L2R	112.5	±	0.2	-0.7	Ec0VV H72E	102.4	±	0.0	-10.8				
Ec:0VV QS8R 114.4 ± 0.4 1.2 Ec:0VV S6R 112.3 ± 0.1 -0.9 Ec:0VV H72D 96.3 ± 0.2 -16. Ec:0VV T101E 114.4 ± 0.3 1.2 Ec:0VV H83K 112.3 ± 0.1 -0.9 Ec:0VV H72D 96.3 ± 0.2 -16.	Ec0VV S105E	114.4	±	0.2	1.2	Ec0VV A109E	112.4	±	0.2	-0.8	Ec0VV Q63K	102.2	±	0.5	-11.0				
Ecovv T101E 114.4 ± 0.3 1.2 Ecovv H83K 112.3 ± 0.1 -0.9	EcOVV Q58R	114.4	±	0.4	1.2	Ec0VV S6R	112.3	±	0.1	-0.9	Ec0VV H72D	96.3	±	0.2	-16.9				
	EcOVV T101E	114.4	±	0.3	1.2	EcOVV H83K	112.3	±	0.1	-0.9									

(B) 多重変異型

Mutants	T	ı (°(C)	ΔT_d (°C)
Ec0VV Template	113.2	±	0.2	0.0
Ec0VV A39D/S48K	118.3	±	0.7	5.1
Ec 0VV Q87K/T88R	122.4	±	0.6	9.2
Ec0VV Q87K/T88R/S110R	120.8	±	0.4	7.6
Ec0VV Q87K/T88R/S82K	126.0	±	0.8	12.8
Ec0VV Q87K/T88R/H72K	127.5	±	0.5	14.3
Ec0VV Q87K/T88R/H72K/S82K	131.5	±	0.6	18.3
Ec0VV_6	136.8	±	0.9	23.6
Ec0VV_6 E34R	133.8	±	0.0	20.6
Ec0VV_6 S110R	135.3	±	0.0	22.1
Ec0VV_6 E57R	136.8	±	0.1	23.6
Ec0VV_6 T101E	139.3	±	0.3	26.1
Ec0VV_6 Q25R/T101E	140.3	±	0.1	27.1
ECOVAL 6 025P/T101E/N109E (ECOVAL 9)	1/2 2	+	0.2	20.0

(2) MD シミュレーションから予測される荷電性残基間の距離の変化

変異により導入した荷電性残基が水中で他の荷電性残基とどのように相互作用するかを明ら かにするために、EcCutA1 変異型の MD シミュレーションを 300K で 40nano sec 行った。 Fig. 1 では Ec0VV_6 におけるイオン対の例を示している。Ec0VV_6 のサブユニット A の Asp39 の Cγ原子と、同じサブユニット A の Lys67 の Cε原子の距離は 2.2±0.2Å であり、この揺 らぎは非常に小さいことが示唆された(Fig. 1a)。サブユニット A の Glu90 とサブユニット B の Lys67 の場合(Fig. 1b)、二つの残基間の強い塩結合間で揺れており、平均距離は 3.5±1.2 Å であ った。サブユニット A の Lys5 と Glu4 の間の距離は非常に大きく揺れていて 5.8±1.8 Å である が、この揺らぎの範囲は大きいながらも一定である(Fig. 1c)。一方、サブユニット間の相互作用 である Arg88 (サブユニット B) と Asp39 (サブユニット C)ではひどく不安定であった。これら の揺らぎ情報は荷電性残基間の静電相互作用による熱安定化を理解する上で有用であると考え られる。

-16.9

Fig. 1

Ec0VV_6におけるイオン-イオン相互作用の経時変化の例 (a) Asp39(Cχ) - Lys67(Cε) 間の距離(サブユニット A) (b) A サブユニット Glu90 (Cδ)- B サブユニット Lys67(Cε) (c) Glu4(Cδ) - Lys5(Cε) (サブユニット A) (d) Arg88(Cδ) (サブユニット B) - Asp39(Cχ) (サブユニット C)

(3) 荷電性残基導入による静電相互作用の増減と変性温度の変化の関係 荷電性残基間の静電相互作用を評価するために、各変異型の MD シミュレーション中の 17 構造を選出した(RMSD 値がほぼ一定に達した 8ns から 2ns 毎に経過した各瞬間構造を選出)。 これらの瞬間構造を用いて荷電性残基間の静電相互作用エネルギーを FoldX によって評価した。 各変異型における蛋白質分子全体での静電相互作用エネルギー(17構造の平均値)と各変異型 の ΔT_{d} の関係を Table 2, Fig. 2 に示した。荷電性残基導入によって熱安定化した多くの変異型で は、蛋白質分子全体での静電相互作用が強化されており、静電相互作用とΔT_dの増加とは高い 相関を示した(r = -0.94 $p = 2.70 \times 10^{-10}$)。

Mutants	Total e ion-ion i (KJ/mol	ner nter of	gy of action trimer)	Difference	Δ <i>T</i> _d (°C)
Ec0VV template	-62.7	±	9.6	0.0	0.0
Ec0VV_Q25R	-85.9	±	21.4	-23.2	1.0
Ec0VV_E34R	-72.2	±	12.8	-9.6	2.5
Ec0VV_A39D	-53.0	±	10.2	9.7	-7.8
Ec0VV_S48K	-82.0	±	25.1	-19.3	-1.0
Ec0VV_E57K	-73.0	±	10.3	-10.3	4.4
Ec0VV_E57R	-68.9	±	9.5	-6.2	4.9
Ec0VV_H72K	-72.2	±	16.5	-9.5	5.2
Ec0VV_S82K	-65.2	±	11.1	-2.6	3.7
Ec0VV_Q87K	-72.7	±	8.5	-10.1	3.6
Ec0VV_T88R	-90.1	±	14.2	-27.4	4.4
Ec0VV_T101E	-57.7	±	16.1	5.0	1.2
Ec0VV_N108E	-64.9	±	12.6	-2.2	2.1
Ec0VV_S110R	-74.7	±	20.0	-12.0	4.1
Ec0VV_A39D/S48K	-93.6	±	12.7	-30.9	5.1
Ec0VV_Q87K/T88R	-83.9	±	8.2	-21.2	9.2
Ec0VV_6	-153.8	±	12.9	-91.1	23.6
Ec0VV_6_E34R	-126.9	±	11.2	-64.2	20.6
<i>E</i> c0VV_6_E57R	-146.0	±	13.0	-83.3	23.6
Ec0VV_6_S110R	-149.1	±	9.9	-86.4	22.1
EcOVV_9	-141.5	±	17.9	-78.8	29.0

Table 2 *Ec*0VV 荷電性残基変異型の 静電相互作用と変性温度

(4) 荷電性残基6残基導入による蛋白質の熱安定化

 $Ec0VV \geq Ec0VV_6 \sigma \Delta T_d$ は 23.6°Cであり、17 個の瞬間構造を用いて評価した静電相互作用 の差は 99.1 kJ/mol/trimer と示唆された。次に、 $Ec0VV_6$ において導入した 6 つの残基について、 どの荷電性残基とイオン対を形成(反発)しているか、詳細を調べた(Table 3)。 $Ec0VV_A39D$ 一残 基変異型では静電相互作用が著しく低下し安定性が低下するが、 $Ec0VV_A39D/S48K$ では導入 した Asp39-Lys48 同士がイオン対を形成することによって熱安定化していることが示唆された。 これは、 $Ec0VV_6$ においても同程度の静電相互作用が示唆された(Table 3A, B)。H72K 変異型で は、C 末端(Arg112)とのイオン対形成が示唆され、 $Ec0VV_6$ においてもこのイオン対による静 電相互作用は保持されていた (Table 3C)。また、S82K, Q87K, T88R に関しても、一残基変異型 の時と同様に $Ec0VV_6$ においても保持されていた(Table 3D - F)。

Table 3 E	c0VV	荷電性残基変異型における	イオンペア	'と静電相互作用エネルギー ((KJ/mol)
-----------	------	--------------	-------	-----------------	----------

(A) Asp39

				m	utants				
	Ec0VV	A39D/	'S48K	Ec	:0VV_6	6	Ec	0VV_9	9
	pairs		energy	pairs		energy	pairs		energy
Asp39	LYS48	inter	-14.4	LYS48	inter	-13.5	LYS48	inter	-13.3
	GLU53	inter	0.3	GLU53	inter	0.4	GLU53	inter	0.5
	LYS55	inter	-0.2	LYS55	inter	-0.3	LYS55	inter	-0.5
	GLU57	inter	1.2	GLU57	inter	1.6	GLU57	inter	1.5
	GLU59	inter	2.6	GLU59	inter	3.0	GLU59	inter	2.6
	LYS81	inter	-0.2	LYS81	inter	-0.3	LYS81	inter	-0.4
	HIS84	inter	0.0	HIS84	inter	-0.1			
				LYS87	inter	-0.5	LYS87	inter	-0.4
				ARG88	inter	-5.4	ARG88	inter	-2.5
	GLU90	inter	15.7	GLU90	inter	17.8	GLU90	inter	14.6
	Inter-s	um	5.0			2.7			2.0
	GLU21	intra	0.0				GLU21	intra	0.0
							ARG25	intra	-0.8
	ASP26	intra	0.0						
	LYS35	intra	-0.1	LYS35	intra	-0.1	LYS35	intra	-0.2
	LYS67	intra	-22.7	LYS67	intra	-22.1	LYS67	intra	-20.9
	HIS72	intra	-0.1	LYS72	intra	0.0	LYS72	intra	0.0
	GLU90	intra	0.1						
				HIS98	intra	0.0			
	ASP100	intra	1.2	ASP100	intra	1.6	ASP100	intra	1.7
							GLU101	intra	0.0
	ASP102	intra	0.7	ASP102	intra	0.8	ASP102	intra	1.0
							GLU108	intra	0.6
	ARG112	intra	0.0	ARG112	intra	-0.1	ARG112	intra	0.0
	Intra-s	um	-20.8			-20.0			-18.7
Total sum			-15.8			-173			-16.7

(B)Lys48

				m	utants				
	Ec0VV_	A39D/	S48K	Ec	:0VV_6	6	Ec	:0VV_9	9
	pairs		energy	pairs		energy	pairs		energy
Lys48	GLU21	inter	0.0				GLU21	inter	0.0
							ARG25	inter	0.5
							LYS35	inter	0.0
	ASP39	inter	-14.4	ASP39	inter	-13.5	ASP39	inter	-13.3
	LYS67	inter	5.4	LYS67	inter	3.8	LYS67	inter	3.6
	ASP100	inter	-0.9	ASP100	inter	-0.9	ASP100	inter	-1.0
							GLU101	inter	0.0
	ASP102	inter	-0.6	ASP102	inter	-0.5	ASP102	inter	-0.6
							GLU108	inter	0.0
	ARG112	inter	0.0						
	Inter-su	um	-10.4			-11.1			-10.8
	ASP20	intra	-0.4	ASP20	intra	-0.6	ASP20	intra	-0.6
	GLU21	intra	-0.1	GLU21	intra	-0.2	GLU21	intra	-0.2
				ASP26	intra	0.0			
	GLU53	intra	-0.2	GLU53	intra	-0.1	GLU53	intra	-0.2
	LYS55	intra	0.2	LYS55	intra	0.2	LYS55	intra	0.5
	GLU57	intra	-1.0	GLU57	intra	-1.3	GLU57	intra	-1.4
	GLU59	intra	-6.9	GLU59	intra	-10.1	GLU59	intra	-7.8
	LYS81	intra	0.2	LYS81	intra	0.3	LYS81	intra	0.3
	HIS84	intra	0.0	HIS84	intra	0.2			
				LYS87	intra	0.6	LYS87	intra	0.5
				ARG88	intra	2.9	ARG88	intra	2.1
	GLU90	intra	-19.5	GLU90	intra	-19.9	GLU90	intra	-20.7
	Intra-su	um	-27.6			-28.1			-27.3
Total sum			-38.0			-39.2			-38.2

(C) Lys72

		mutants								
	Ec 0V	V_H72	2K	Ec)VV_6		Ec	0VV_9		
	pairs		energy	pairs		energy	pairs		energy	
Lys72	N-terminal	inter	0.1	N-terminal	inter	0.3	N-terminal	inter	0.0	
	ASP3	inter	-0.2	ASP3	inter	-0.2	ASP3	inter	-0.2	
	GLU4	inter	-0.3	GLU4	inter	-0.2	GLU4	inter	-1.0	
	LYS5	inter	0.0	LYS5	inter	0.0	LYS5	inter	0.2	
	GLU53	inter	-0.7	GLU53	inter	-0.7	GLU53	inter	-0.6	
	Inter-su	m	-1.0			-0.7			-1.6	
	LYS30	intra	0.0	LYS30	intra	0.0	LYS30	intra	0.0	
	GLU34	intra	-1.5	GLU34	intra	-1.7	GLU34	intra	-2.0	
	LYS35	intra	1.3	LYS35	intra	1.5	LYS35	intra	1.7	
				ASP39	intra	0.0	ASP39	intra	0.0	
	GLU78	intra	-0.8	GLU78	intra	-0.8	GLU78	intra	-0.7	
				LYS82	intra	0.2	LYS82	intra	0.2	
	HIS83	intra	0.1	HIS83	intra	0.0	HIS83	intra	0.0	
							GLU108	intra	-0.8	
]	C-terminal	intra	-12.5	C-terminal	intra	-16.2	C-terminal	intra	-14.5	
	Intra-su	m	-13.4			-16.9			-16.1	
Total sum			-14.3			-17.6			-17.7	

(D)Ly	ys82
-------	------

		mutants								
	Ec0\	/V_S82	K	Ec	DVV_6		Ec	0VV_9		
	pairs		energy	pairs		energy	pairs		energy	
Lys82	N-terminal	inter	0.4	N-terminal	inter	0.9	N-terminal	inter	0.7	
				ASP3	inter	0.0	ASP3	inter	-0.1	
	GLU4	inter	-0.2				GLU4	inter	-0.4	
							LYS5	inter	0.0	
	HIS98	inter	0.0	HIS98	inter	0.0				
	ASP100	inter	-0.8	ASP100	inter	-0.8	ASP100	inter	-0.8	
							GLU101	inter	-0.4	
	ASP102	inter	-0.4	ASP102	inter	-0.4	ASP102	inter	-0.4	
	Inter-su	ım	-1.0			-0.4			-1.2	
	ASP26	intra	-0.2	ASP26	intra	-0.1	ASP26	intra	-0.1	
	LYS30	intra	1.1	LYS30	intra	0.6	LYS30	intra	0.6	
	GLU34	intra	-1.8	GLU34	intra	-2.0	GLU34	intra	-1.9	
	LYS35	intra	0.0	LYS35	intra	0.0	LYS35	intra	0.0	
	HIS72	intra	0.0	LYS72	intra	0.2	LYS72	intra	0.2	
	GLU78	intra	-6.8	GLU78	intra	-6.1	GLU78	intra	-8.4	
	LYS81	intra	1.0	LYS81	intra	1.2	LYS81	intra	1.1	
	HIS83	intra	0.8	HIS83	intra	0.6	HIS83	intra	0.2	
	HIS84	intra	0.0	HIS84	intra	0.0				
				LYS87	intra	0.1	LYS87	intra	0.5	
				ARG88	intra	0.3	ARG88	intra	0.6	
				GLU90	intra	0.0				
	C-terminal	intra	0.0	C-terminal	intra	-0.1	C-terminal	intra	0.0	
	Intra-su	ım	-5.8			-5.2			-7.2	
Total sum			-6.8			-5.6			-8.4	

(\mathbf{E})	1
(Г)	Argoo

(E) Lys87

				mu	utants						
	Ec0V	V_Q8	7K	Ec	Ec0VV_6			Ec0VV_9			
	pairs		energy	pairs		energy	pairs		energy		
Lys87	N-terminal	inter	0.1	N-terminal	inter	0.0	N-terminal	inter	0.1		
							ARG25	inter	0.0		
	LYS35	inter	0.0	LYS35	inter	0.0					
				ASP39	inter	-0.5	ASP39	inter	-0.4		
	LYS67	inter	0.1	LYS67	inter	0.0	LYS67	inter	0.0		
	ASP100	inter	-0.7	ASP100	inter	-0.9	ASP100	inter	-0.8		
							GLU101	inter	-0.2		
	ASP102	inter	-1.4	ASP102	inter	-2.3	ASP102	inter	-1.4		
	ARG112	inter	0.0	ARG112	inter	0.0	ARG112	inter	0.0		
	Inter-su	m	-1.9			-3.5			-2.6		
	ASP20	intra	-4.3	ASP20	intra	-0.4	ASP20	intra	-1.5		
	GLU21	intra	-0.4	GLU21	intra	-0.1	GLU21	intra	-0.2		
	ASP26	intra	-0.5	ASP26	intra	-0.1	ASP26	intra	-0.2		
	LYS30	intra	0.2	LYS30	intra	0.0	LYS30	intra	0.2		
	GLU34	intra	0.0	GLU34	intra	0.0	GLU34	intra	-0.1		
				LYS48	intra	0.6	LYS48	intra	0.5		
	GLU53	intra	-0.3	GLU53	intra	-0.3	GLU53	intra	-0.3		
	LYS55	intra	0.4	LYS55	intra	0.6	LYS55	intra	0.5		
	GLU57	intra	-1.5	GLU57	intra	-1.7	GLU57	intra	-1.2		
	GLU59	intra	-3.5	GLU59	intra	-3.4	GLU59	intra	-2.3		
	GLU78	intra	-0.1	GLU78	intra	-0.1	GLU78	intra	-0.3		
	LYS81	intra	0.6	LYS81	intra	0.7	LYS81	intra	0.8		
				LYS82	intra	0.1	LYS82	intra	0.4		
	HIS83	intra	0.0	HIS83	intra	0.0					
	HIS84	intra	0.0	HIS84	intra	0.0					
				ARG88	intra	3.1	ARG88	intra	2.9		
	GLU90	intra	-0.7	GLU90	intra	-0.7	GLU90	intra	-0.8		
	Intra-su	Im	-10.1			-1.6			-1.7		
Total sum			-12.0			-5.1			-4.3		

<u> </u>				mi	tants				
	Ec0V	V_T88	IR	Ec	DVV_6		Ec	0VV_9	
	pairs		energy	pairs		energy	pairs		energy
Arg88	N-terminal	inter	0.2	N-terminal	inter	0.1	N-terminal	inter	0.3
							ASP3	inter	0.0
							GLU4	inter	-0.2
							LYS5	inter	0.0
	LYS35	inter	0.2	LYS35	inter	0.1	LYS35	inter	0.1
				ASP39	inter	-5.4	ASP39	inter	-2.5
	LYS67	inter	0.9	LYS67	inter	1.3	LYS67	inter	0.7
				HIS98	inter	0.0			
	ASP100	inter	-5.0	ASP100	inter	-5.4	ASP100	inter	-7.8
							GLU101	inter	-1.9
	ASP102	inter	-16.0	ASP102	inter	-13.8	ASP102	inter	-13.0
							GLU108	inter	-0.8
	ARG112	inter	0.5	ARG112	inter	1.0	ARG112	inter	0.7
	C-terminal	inter	0.0	C-terminal	inter	0.0			
	Inter-su	ım	-19.2			-22.1			-24.4
	ASP20	intra	0.0	ASP20	intra	-0.1	ASP20	intra	-0.2
				ASP26	intra	0.0	ASP26	intra	-0.1
				LYS30	intra	0.1	LYS30	intra	0.2
							GLU34	intra	-0.1
				LYS48	intra	2.9	LYS48	intra	2.1
	GLU53	intra	-2.3	GLU53	intra	-1.9	GLU53	intra	-1.3
	LYS55	intra	0.9	LYS55	intra	0.9	LYS55	intra	0.9
	GLU57	intra	-2.0	GLU57	intra	-1.8	GLU57	intra	-1.0
	GLU59	intra	-2.7	GLU59	intra	-2.6	GLU59	intra	-1.7
	GLU78	intra	-0.2	GLU78	intra	-0.2	GLU78	intra	-0.9
	LYS81	intra	2.5	LYS81	intra	2.5	LYS81	intra	3.8
				LYS82	intra	0.3	LYS82	intra	0.6
	HIS83	intra	0.0				HIS83	intra	0.0
				HIS84	intra	0.1			
				LYS87	intra	3.1	LYS87	intra	2.9
	GLU90	intra	-3.6	GLU90	intra	-5.1	GLU90	intra	-4.9
	Intra-su	ım	-7.5			-1.8			0.2
Total sum			-26.7			-23.9			-24.2

(G) Arg25

`	mutants							
	Ec0V	V_T10	1E	Ec0VV_9				
	pairs		energy	pairs		energy		
Glu101				LYS48	inter	0.0		
				GLU53	inter	0.0		
	GLU78	inter	2.6	GLU78	inter	2.4		
	LYS81	inter	-2.3	LYS81	inter	-3.6		
				LYS82	inter	-0.4		
				LYS87	inter	-0.1		
				ARG88	inter	-1.9		
	GLU90	inter	0.0	GLU90	inter	0.2		
	Inter-sum		0.3			-3.4		
	N-terminal	intra	-11.2	N-terminal	intra	-6.1		
	ASP3	intra	2.1	ASP3	intra	3.8		
	GLU4	intra	1.1	GLU4	intra	2.7		
	LYS5	intra	-0.2	LYS5	intra	-0.5		
				ASP39	intra	0.0		
	LYS67	intra	0.0	LYS67	intra	0.0		
				HIS98	intra	-0.5		
	ASP100	intra	5.5	ASP100	intra	6.3		
	ASP102	intra	4.4	ASP102	intra	5.3		
				GLU108	intra	2.5		
	ARG112	intra	-0.3	ARG112	intra	-0.4		
	C-terminal	intra	0.1					
	Intra-sum		1.5			13.3		
Total sum			1.7			9.9		

(H) Glu101

	mutants					
	Ec0W_Q25R			Ec0VV_9		
	pairs		energy	pairs		energy
Arg25	ASP20	inter	0.0			
	GLU21	inter	-0.2	GLU21	inter	-0.2
				LYS48	inter	0.5
	LYS55	inter	0.3	LYS55	inter	0.2
	GLU57	inter	-2.6	GLU57	inter	-1.9
	GLU59	inter	-1.5	GLU59	inter	-1.4
				LYS87	inter	0.0
	GLU90	inter	-0.6	GLU90	inter	-0.2
	Inter-su	um	-4.6			-3.1
	ASP20	intra	-2.6	ASP20	intra	-2.8
	GLU21	intra	-5.2	GLU21	intra	-5.6
	ASP26	intra	-5.2	ASP26	intra	-4.7
	LYS30	intra	0.7	LYS30	intra	0.7
	GLU34	intra	-0.1	GLU34	intra	-0.1
	LYS35	intra	0.0			
				ASP39	intra	-0.8
	GLU59	intra	0.0			
	LYS67	intra	0.2	LYS67	intra	0.2
	HIS83	intra	0.1			
	GLU90	intra	0.0	GLU90	intra	0.0
	Intra-su	um	-12.1			-13.0
Total sum			-16.6			-16.1

(I) Glu108

	mutants						
	Ec0VV_N108E			Ec0VV_9			
	pairs		energy	pairs		energy	
Glu108				ASP3	inter	0.0	
	GLU4	inter	0.4	GLU4	inter	0.5	
	LYS5	inter	-0.2	LYS5	inter	-0.4	
				LYS48	inter	0.0	
	GLU53	inter	0.8	GLU53	inter	0.5	
	LYS81	inter	-0.1	LYS81	inter	-0.2	
				ARG88	inter	-0.8	
	GLU90	inter	0.0	GLU90	inter	0.0	
				HIS98	inter	0.0	
	Inter-sum		1.0			-0.3	
	N-terminal	intra	-0.1	N-terminal	intra	-4.6	
	ASP3	intra	0.2	ASP3	intra	0.6	
	GLU4	intra	0.2	GLU4	intra	0.2	
	LYS5	intra	-0.1	LYS5	intra	0.0	
	GLU34	intra	0.0				
	LYS35	intra	-0.4	LYS35	intra	-0.4	
				ASP39	intra	0.6	
	LYS67	intra	-0.1	LYS67	intra	-0.2	
	HIS72	intra	-0.5	LYS72	intra	-0.8	
	GLU78	intra	0.0				
	HIS98	intra	0.0	HIS98	intra	-0.1	
	ASP100	intra	0.9	ASP100	intra	1.4	
				GLU101	intra	2.5	
	ASP102	intra	1.3	ASP102	intra	1.5	
	ARG112	intra	-2.4	ARG112	intra	-3.9	
	C-terminal	intra	0.8	C-terminal	intra	0.1	
	Intra-sum ·		-0.1			-3.2	
Total sum			0.9			-3.5	

(5) Ec0VV_6への更なる荷電性残基導入による蛋白質の熱安定化

 $Ec0VV_6$ を鋳型としてさらに荷電性残基の導入を検討した。E34R(+2.5°C), E57R (+4.9°C), S110R(+4.1°C)一残基置換は、それぞれ静電相互作用が増加し、 T_d が増加していたが、 $Ec0VV_6$ E57R(+23.6°C) は T_d が変化せず、 $Ec0VV_6$ E34R(+20.6°C) と $Ec0VV_6$ S110R(+22.1°C)は $Ec0VV_6$ よりも不安定化し、分子全体での静電相互作用も低下していた。

一方、Q25R, T101E, N108K の3変異を $Ec0VV_6$ に導入した $Ec0VV_9$ 変異型では $Ec0VV_6$ と比較して T_d が 5.4°C増加した。 $Ec0VV_9$ 変異型において、 $Ec0VV_6$ 変異型に導入している6 つの荷電性残基に関しては $Ec0VV_6$ とほぼ同様の静電相互作用を保持していた(Table 3)。新た に導入した Arg25 の静電相互作用は $Ec0VV_9$ 変異型においても、一残基置換型の場合と同様 であった。Glu101 は一残基変異型、 $Ec0VV_9$ 変異型、いずれにおいても静電相互作用の低下が 示唆されたが、実際の変性温度は増加した。101 位は α -Helix 3 の N 末端に位置するため、負荷 電残基導入による Helix dipole moment の強化で安定化したものと考えられる。Glu108 では一残 基置換、 $Ec0VV_9$ 変異型ともに静電相互作用の変化は小さかった。108 位は α -Helix 3 に位置し ているが、正荷電残基変異型 N108K, N108R においても共に安定性は増加していた(N108E, N108K, N108R 変異型の ΔT_d は それぞれ、+2.1, +2.8, +2.3°C)。そのため、静電相互作用以外の 要因で安定化していると考えられる。鋳型の Asn よりも Glu, Arg, Lys の方が Helix propensity が 高いことが知られているため、2 次構造強化によって、熱安定性が増加したものと考えられる。

(まとめ)

本研究では、荷電性残基導入によって大腸菌由来 CutA1 蛋白質の熱安定性を超好熱菌レベル にまで上昇させることで変性温度(T_d)150°Cの蛋白質を再現することを目指した。網羅的な荷電 性残基一残基変異導入によって安定性が増加する変異型を多数取得したが、一残基導入によっ て最も安定性が増加した変異型の場合でも+5°C程度の増加であった。そのため、蛋白質の熱安 定性を超好熱菌レベルまで高めるためには、数多くの荷電性残基を導入して静電相互作用を顕 著に増加させなければならないことが示唆された。そこで、多重変異型を作製した結果、最も 熱安定性が増加した変異型で、野生型と比較して T_d が 52.3°C増加した。

安定性が増加した荷電性残基変異型について、MD シミュレーションを行うことで、導入し た荷電性残基の挙動と得られる静電相互作用の増減を評価した。その結果、荷電性残基導入に よって増加した静電相互作用と変性温度の増加との間には、高い相関が見られた。つまり、静 電相互作用を増加させるように荷電残基を導入すれば、熱安定性の高い蛋白質を作製すること が出来得ると考えられる。しかしながら、静電相互作用が低下した変異型であっても、安定性 増加の要因が静電相互作用以外(例えば Helix Dipole 強化、2 次構造の propensity 等)の場合は、 熱安定性が増加していた。

5.主な発表論文等

〔 雑誌論文〕(計 2 件)

<u>Y. Matsuura</u>, M. Takehira, G. I. Makhatadze, Y. Joti, H. Naitow, N. Kunishima, and K Yutani: Strategy for Stabilization of CutA1 proteins due to ion-ion interactions at temperatures of over 100 °C. *Biochemistry* (査読有) 57, 2649–2656. (2018)

K. Yutani, Y. Matsuura, H. Naitow, and Y. Joti:

Ion-ion interactions in the denatured state contribute to the stabilization of CutA1 proteins. *Sci Rep.* (査読有) 8, 7613. (2018)

〔学会発表〕(計3件)

松浦 祥悟、竹平 美千代、城地 保昌、内藤 久志、小野 直子、国島 直樹、油谷 克英: "荷電性残基の挙動を MD simulation により評価することで明らかになった蛋白質の熱安定 化に果たす静電相互作用の役割"

第17回日本蛋白質科学会年会(2017)

油谷 克英、<u>松浦 祥悟</u>、竹平 美千代、内藤 久志、城地 保昌:

"蛋白質の変性状態における荷電性残基の特徴:高温での MD simulation"

第17回日本蛋白質科学会年会(2017)

松浦 祥悟、竹平美千代、小野直子、国島直樹、油谷克英:

"網羅的な荷電性残基変異型の安定性変化のデータから明らかになった高温での熱安定化戦略"第16回日本蛋白質科学会年会(2016)

- 6.研究組織
- (1) 研究分担者
- (2) 研究協力者

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。