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PMV; Personal Mobility Vehicle

This research is based on a data driven approach for safe and smooth autonomous navigation of a

personal mobility vehicle (PMV) when facing pedestrians. For autonomous navigation we implemented a
Frenet planner to achieve safe and smooth navigation for the passenger and pedestrians around.

This research grant was used to finance a study on multi-modal human

emotional state detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle).

This research developed a navigational approach that takes into consideration the perception of
comfort by a human passenger. Comfort is the state of being at ease and free from stress; thus,
comfortable navigation is a ride that, in addition to being safe, is perceived by the passenger as
being free from anxiety and stress. This study considers how to compute passenger comfortable paths.
To compute such paths, passenger discomfort is studied in locations with good visibility and those
with no visibility. Autonomous-navigation experiments are performed to build a map of human
discomfort that is used to compute global paths. A path planner is ?roposed that minimizes a
three-variable cost function: location discomfort cost, area visibility cost, and path length cost.
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The support ratio of the number of working-age individuals per person aged 65 or older is
decreasing (2017 World Population Data Sheet). In developed countries like Japan, people
being able to provide services for aged people are not enough to allow them to be
independent and be engaged socially. Research institutes and companies all over the world
are doing research and developing autonomous car-vehicles. On the other hand, there are
few works in mobility at a smaller scale such as PMV’s. PMV’s can provide mobility
independence between people’s homes and autonomous cars or buses. Other services that
could be provided by PMV’s are local services such as going out for shopping or meeting
friends in common spaces. In the same way, as healthy young people do, aged people like to
go out independently with family or friends. People do not want to ride a semi or fully
autonomous vehicle alone.
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This research grant was used to finance a study on multi-modal human emotional state
detection while riding a powered wheelchair (PMV; Personal Mobility Vehicle). This
research developed a navigational approach that takes into consideration the perception of
comfort by a human passenger. Comfort is the state of being at ease and free from stress;
thus, comfortable navigation is a ride that, in addition to being safe, is perceived by the
passenger as being free from anxiety and stress. This study considers how to compute
passenger comfortable paths. To compute such paths, passenger discomfort is studied in
locations with good wvisibility and those with no visibility. Autonomous-navigation
experiments are performed to build a map of human discomfort that is used to compute
global paths. A path planner is proposed that minimizes a three-variable cost function:
location discomfort cost, area visibility cost, and path length cost. The contents of this
research are divided in 2 parts:

1. Interaction Vehicle-Passenger

1.1 A study regarding comfortable navigation for the passenger based on a discomfort map
1.2 An analysis of navigational habituation during self-driving and autonomous-driving
utilizing physiological sensing.

2. Comfortable Autonomous Navigation while facing other pedestrians
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1. Interaction Vehicle-Passenger

1.1 Building a Passenger Discomfort Map for Autonomous Navigation

This research developed a navigational approach that takes into consideration the
perception of comfort by a human passenger. Comfort is the state of being at ease and free
from stress; thus, comfortable navigation is a ride that, in addition to being safe, is
perceived by the passenger as being free from anxiety and stress. This study considers how
to compute passenger comfortable paths. Autonomous-navigation experiments are
performed to build a map of human discomfort that is used to compute global paths. A path
planner is proposed that minimizes a three-variable cost function: location discomfort cost,

area visibility cost, and path length.



Figure 1. PMV transporting a human passenger where the ride should be safe and
comfortable for the human passenger.

1.2 Navigational Habituation

The second topic of the research is regarding a model of navigational habituation for
human passengers riding an autonomous robotic wheelchair. We present an example on
how robot technology is utilized to understand human behavior which is useful to build
human-like navigation models. The work consisted of data collection from manual driving
participants, habituation modeling and autonomous navigation experimentation. Manual
driving data collection consisted of recording human driving control behavior using a
robotic wheelchair in a complex labyrinth-like environment, while measuring physiological
activity and emotional state via subjective reports (questionnaires). The purpose of this
first part was to collect a enough representation of the evolution of human driving behavior
in a complex environment (23 participants), such that a numerical model could be found to
approximate the trend in velocity usage; velocity usage characterizes navigational
habituation.

2. Autonomous Navigation while facing other pedestrians

The second topic of the research is regarding a data driven approach for safe and smooth
autonomous navigation of a personal mobility vehicle (PMV) when facing moving obstacles
such as people and bicycles in public pedestrian paths. In a period of three months, data
from five different persons driving the robotic PMV in an outdoor environment while facing
pedestrians were collected. We performed an analysis of the parameters involved for
human-driven smooth navigation. Relevant parameters regarding PMV-Human
interaction included distance to moving objects, passing side and velocities. Moreover, data
suggests the existence of a social navigational distance for the PWV. For autonomous
navigation we implemented a Frenet planner to achieve safe and smooth navigation for the

passenger and pedestrians around.
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Figure 5. A PMV transporting a human passenger while negotiating traffic with pedestrians.
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1.1 Building a Passenger Discomfort Map for Autonomous Navigation

Based on data extracted from human passenger experimentation, modeling the corridor location comfort is
given by eq. (1) where y is the normalized position within the corridor (0 <y < 1) and constant c is the
preferred position in the corridor. For model generalization, variable y and constant ¢ are given in the

corridor with values between 0 and 1. The other constants are defined asa=0.1 and b =0.3.
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The process for computing the discomfort map (HCoM) is illustrated in Fig. 2. Firstly, we extracted the
nodes and edges of the grid map (bottom layer) that builds an extended Voronoi graph (bottom layer). The
topology was simplified with straight line segments because the standard VVoronoi graph is sensitive to
irregularities in the environment produced by sensor noise or irregular surfaces, which would result in
irregular cost maps for the HCoM. The final graph is illustrated in the center of Fig. 2.a, where nodes of the
graph are illustrated in blue and edges in green. Finally, we assigned the width of the corridor (2.4 m) to all

segments and applied the model in Eq. 1 to obtain HCoM.
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a) From bottom to top: occupancy grid map, b) Most comfortable locations are
the extended VVoronoi graph, topological map shown in yellow; the darker the color,
and on top the Human-Comfort Map (HCoM). the less comfortable

Figure 2. Mapping navigational discomfort in visible areas on top of a geometric map.

1.2 Navigational Habituation
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(a) Driving velocity in m/sec. Velocity was slower in the first
lap compared to the ninth lap.
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(b) Heart inter-beat interval (IBI) in s. IBI was lower showing
more arousal in the first lap compared to the ninth lap.
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(c) Galvanic skin response in microSiemens. GSR response
showed higher absolute values compared to the one’s in the
ninth lap.

Fig. 4. Comparison of vehicle velocity and physiological measurements of a human

driving a course. The first lap is on the left and the ninth lap on the right.



Fig. 4 shows an example of navigational habituation. The figure shows a participant
driving a robotic wheelchair in a labyrinth-like environment for nine laps. The left side of
the figure shows the first driving lap and the right side shows the ninth driving lap of the
same driver. The top shows vehicle velocity (in m=sec), the middle row shows driver IBI (in
sec) and the bottom row shows the driver skin conductance (in microsiemens) It can be seen
that on the first lap (left side), velocity is low, heart beat is low (meaning high beating
frequency) and galvanic skin conductance response is high. This means that despite the
human drives at slow velocities his emotional sate arousal level is high. The ninth lap of
the driver is shown on the right side. As the driver became habituated, the driving velocity
became higher (Fig. 4(a)). Despite driving faster, inter-beat interval became higher (lower
heart frequency rate) (in Fig. 4(b)) and his galvanic skin response went down (Fig. 4(c)).

2. Autonomous Navigation while facing other pedestrians

We built personal space distribution graphs for autonomous navigation. In Fig. 6.a. red
color means high density and dark blue low density. Around (0,0) there is a sort of
navigational personal space where pedestrians did not enter. This ellipsoidal shape which
extend up to around 3.5 m is similar to what has been reported in personal space literature.
As it is hard to visualize the interactions in this density graph, we picked up by hand and
analyzed some typical interactions such as passing by facing pedestrians, following,
leading and side by side. As it is hard to visualize the interactions in this density graph, we

picked up by hand and analyzed some typical interactions such as passing by.
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(a) Distribution of PMV driven along people (b) PMV passing by pedestrians.

Fig. 6 Human driven data. PMV navigating through pedestrian flow.
Our planner gave preference towards avoiding left, nevertheless, as shown in experimental
result figure 7 our experimental environment is complex and there are people coming at

both sides of the road. The snapshots figure shows the cluttered target environment.

Fig. 7. On the left, the PMV first avoided a girl walking on the right side of the sidewalk

after she avoided some bicycles. Then the PMV had to move back left to avoid incoming



pedestrians. On the right the wheelchair avoids the man crossing the road while there is a

bicycle coming on the right. Then there is a man in suit walking on the left.
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