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associative / relational (rule-based)

Human cognition involves two different styles of thinking: fast, reflexive and effortless (Type 1)

versus slow, reflective and effortful (Type 2). The challenge is to provide a coherent theoretical
account of the apparent dual nature of cognition.

Dual-process theories are controversial because they are vaguely defined and
don’ t always align with the supposed distinctions. We proposed a category theory (adjoint
functors) approach to dual-process aspects of cognition. A series of experiments were conducted to
elicit dual-processing routes within a given task. Our main theoretical result was to show that an
associative/relational (rule-based) form of dual-process is related by a category (sheaf) theory
construction, called sheaving, which is an adjoint functor. This result provides a new way of
modeling cognitive representations and processes.
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1. IR S D 5

Human cognition involves two different styles of thinking: fast, reflexive and
effortless on one hand versus slow, reflective and effortful on the other. The two styles
are called Type 1 and Type 2 by dual-process theories of cognition. Dual-process
theories are controversial because they are vaguely defined and don’t always align
with the distinctions. The challenge is to provide a coherent theoretical account of
the apparent dual nature of cognition.

2. WO HY

We propose that dual-process features of cognition are related by adjoint functors:
a pair of structure-preserving maps that cohere in a particular way. The project is
two-fold: empirical and theoretical. On the empirical side, we conducted a series of
experiments, motivated by our category theory approach to cognition (Phillips,
Takeda, & Sugimoto, 2016, 2017). Here, we focus on the experimental work designed
to test the associative/relational (Type 1/Type 2) distinction and its empirical
implications (Phillips, et al, 2016). (Further theoretical work is needed to model the
forms of dual process cognition observed in our other experiments so are not
examined here.) The empirical implication specifically addressed was the capacity
for generalization to novel stimuli — relational (rule-based) systems afford a form of
generalization that ssociative systems do not.

On the theoretical side, we proposed a category theory (adjoint functors) account of
such dual-process distinctions. Category theory is a branch of (meta)mathematics
invented to formalize connections between mathematical constructions. Adjoint
functors are essential to establishing such connections. Here, we model the
connection between dual-process aspects of cognition using adjoint functors.

We briefly describe one of our experiments as a concrete example that motivated
the specific use of adjoint functors that are described in the Methods section. The
experiment involved cue-target learning. The cues were pairs of letters and the
targets were coloured shapes. Each map from cues to targets was composed of a
product of letter-colour and letter-shape maps. Thus, participants could learn a letter
pair to coloured shape map either associatively (i.e. without regard to the constituent
letters, colours and shapes), or relationally by recognizing the component letter-
colour and letter-shape rules (see Fig. 1). Relational process afforded correct
prediction on novel cues (letter pairs). Associative processes treat each cue-target
Instance as unique — no generalization to novel cues is afforded. Response errors
revealed that participants employed both associative and relational processing,
depending on the number letter pairs to coloured shapes that had to be learned in
each task, and the order in which that tasks were conducted (Fig. 2).
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FIGURE 1 | Maps (A) char2shape and (B) char2color and their product
(C) char2shape x char2color. The dashed arrows direct computation of the
product map, solid arrows indicate indirect computation of the product map
via the two component maps.

Figure 1° An example map from pairs of letters to coloured shapes (Phillips et al, 2016).
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Figure 2: Error rates for training (OId) and testing (Novel) letter pairs for product and non-
product cue-target maps (Phillips et al, 2016).

3. WDk

This form of dual process is modeled using category (sheaf) theory methods, which
involve sheaves and presheaves. A sheaf or presheaf is a functor, which we use to
model cues and targets as data (visual features) attached to a topological space (task
dimensions). For intuition, a presheaf/sheaf can be regarded as a relational database
table, where the names that make up the table headings correspond to the
topological space and the rows (data) of the table correspond to features, such as
specific letters, colours, or shapes. See Fig 3 for a comparison of category/sheaf theory
concepts with more familiar set theory and relational database theory concepts.

Set theory Relational database theory
Element, set Caolumn name, header
(assignment) function [data) table

{higher-order} function [tabk) trarsformation

optimal function natural join, rencrmalzation
Category theory Sheaf theory
Chject/morphizm, categony Open setinclusion, fopalogy
{contravariant) funcior presheaf/sheaf

natural transformation presheaf/sheal morphism
universal morphism pulback, sheaving

Figure 3° Corresponding concepts in set/relational theory and category/sheaf theory (Phillips,
2018).

An example of modeling cues/targets as presheaves and sheaves follows. Suppose
cues (letter pairs) GA, GE and KA. The positions of each letter correspond to the
points of the underlying topological space and the pairs correspond to the rows of the
table shown in Fig 4 (top). A sheaf is a kind of “complete” presheaf: e.g., the sheaf in
Fig 4 (bottom) includes the pair KE, which is missing in the presheaf. The crucial
sheaf theory construction is called sheaving, which takes every presheaf to the
nearest sheaf. In this example that means “completing” the presheaf by adding the
missing pair, KE.
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Figure 4: An example of sheaving (Phillips, 2018)
4. WrZERR

The main (theoretical) result is to provide a sheaf theory basis for the associative-
relational form of dual-process cognition observed in our experiments is modeled as
an instance of sheaving (Fig 5). Cues and targets are presheaves/sheaves, hence cue-
target maps are presheaf/sheaf morphism. The training set is a subset of the
mappings for the given task. Hence, the training set is a presheaf morphism.
Generalization to the testing set, containing novel letter pairs and coloured shapes,
obtains from the sheaving construction, which realizes all training and testing
mappings as the sheaf morphism. Thus, we modeled the relational generalization
aspect of this task. The sheaving functor is (left) adjoint to the inclusion functor.
Thus, training and testing are formally related by adjoint functors.

This approach also captures the lack of generalization, which is a property of
assocative processes, observed in the small set-size conditions by regarding the
underlying space as the indiscrete topological space. In this case, the two feature
dimensions are essentially a single dimension, i.e. each cue/target is treated as a
single (chunked) item without regard to its constituent letters, colours and shapes.
In this situation, the presheaf corresponding to the training is already a sheaf. So,
sheaving returns just the training set — there is no generalization to the testing set.
The shape of the space (i.e. indiscrete versus discrete) captures the difference
between generalization and no generalization (Phillips, 2018). The sheaves attached
to these two spaces are also related by another pair of adjoint functors, which we
suggest accounts for associative-relational form of dual-process (Phillips, 2019).
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Figure 5: An example of generalization as sheaving (Phillips, 2018).



Additional theoretical work showed that sheaving captures other aspects of
cognition, such as visual feature binding (Phillips, 2018b, 2019). Our adjoint functors
approach approach opens up a new way to model cognitive representations and
processes, which we are continuing to develop.
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