科学研究費助成事業

研究成果報告書

機関番号: 12401 研究種目: 基盤研究(C)(特設分野研究) 研究期間: 2016~2019 課題番号: 16KT0163 研究課題名(和文)高強度中赤外光を用いたタンパク質の遷移状態制御

研究課題名(英文)Optical control of transition states in proteins with mid-infrared laser pulses at high intensities

研究代表者

中村 亮介 (Nakamura, Ryosuke)

埼玉大学・理工学研究科・非常勤研究員

研究者番号:70379147

交付決定額(研究期間全体):(直接経費) 3,400,000円

研究成果の概要(和文):これまでの研究により、タンパク質は準安定構造間を遷移することで機能を発現する ことが明らかになってきた。本研究の目的は、遷移状態における水素結合ネットワークの役割を明らかにすると ともに、中赤外光照射による遷移状態制御を実現することである。 反応トリガー光、高強度中赤外光、広帯域プローブ光を組み込んだ高感度時間分解分光システムを構築し、光受 容タンパク質に対して中赤外光照射の効果を精密に計測した。中赤外照射による明確な信号変化は確認できた が、解析の結果、電子励起状態や反応中間体の寄与は見られなかった。

研究成果の学術的意義や社会的意義 タンパク質に光を照射することで、その機能性を向上させたり、抑制したり、あるいは本来とは全く異なる機能 を発現することができれば、創薬・医療応用に対する新しいストラテジーを描くことができる。本研究では、タ ンパク質機能の光制御に関して、準安定状態および準安定状態を制御していると予想される水素結合ネットワー クに着目した。赤外光によって、水素結合の構造を変調し、それによってタンパク質の機能を制御できるのでは ないかという仮説を立てた。結果を得るまでには至らなかったが、仮説検証に必要な様々な要素を明らかにする ことができ、今後の研究へと展開する素地ができた。

研究成果の概要(英文): Several studies have clarified that the transition among quasi-stable species with their characteristic structures is essential for protein functioning. The purposes of

this study are 1) clarification of an essential role of hydrogen-bond network in the transitions; 2) optical control of the transitions with mid-infrared laser pulses. A femtosecond time-resolved spectroscopy system with high sensitivity was developed based on reaction-trigger UV pulse, tunable mid-infrared pump pulse, and broadband probe pulse. Although a signal change induced by the mid-infrared pulse was clearly observed, it is suggested that the change does not come from the contribution of excited state or intermediate states.

研究分野:光物性物理学

キーワード: 赤外レーザ 光受容タンパク質

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。

2版

様 式 C-19、F-19-1、Z-19(共通)

1.研究開始当初の背景

生体内での高効率・高選択的な化学反応を担う機能タンパク質の動作原理が分かれば、高度な 機能を持つ人工高分子を設計するための基本原理が得られる。近年、遺伝子改変技術やX線構造 解析、分光研究によって、タンパク質は準安定構造間を遷移することで機能を発現することが明 らかになってきた。さらに、構造間の遷移は、アミノ酸残基で構成される水素結合ネットワーク によって巧みに制御されていることが分かってきた。つまり、水素結合ネットワークの組み替え、 切断、形成が、タンパク質の構造変化と協調するように進行しているのである。従って、タンパ ク質の機能発現過程を明らかにすることは遷移状態を理解することであり、それを制御してい る水素結合ネットワークを理解することである。

本研究課題で取り扱う機能タンパク質は、光受容タンパク質 Photoactive Yellow Protein(PYP) である。PYP は、近紫外光照射によって、次々と準安定構造間を遷移していく一連の光誘起構造変化(光反応サイクル)を示す。その際、水素結合ネットワーク内のプロトン着脱が、構造変化と協調するように次々に進行することが分かっている。従って、各状態間の遷移には、水素結合ネットワークが重要な役割を果たしていると言える。本研究では、光反応サイクルを開始させるトリガー光に対してタイミング制御された高強度中赤外光を用いて、遷移状態における水素結合ネットワークを強く励振する。その結果として生じた反応収率の変化を計測・解析することで、遷移状態における水素結合の役割を明らかにするとともに、中赤外光照射による状態間遷移を実現する。

2.研究の目的

本研究の最終目標は、 「水素結合に対する光変 調を基軸としたタンパク 質の遷移状態制御を実現 すること」である。その目 標を達成するために、光受 容タンパク質PYPに対 して、各中間状態におい て、高強度中赤外光を照射 し、水素結合ネットワーク を構成している局所的振 動モードを強く励振する。 高い振動量子数まで励起 することで、非調和性を伴 った大振幅振動を誘起し、 水素結合ネットワークを

変調する。その後の振動モードの変化や反応過程の変化を紫外可視プローブ光で観測することで、遷移状態を構成している振動モードを明らかにする。各中間状態は、トリガー光とのタイミング制御によってトラップする方法と、低温によってトラップする方法の2通りを行い比較する。励起する振動モードは、発色団に関しては C=O 伸縮モード及びエチレン部 C=C 伸縮モード、周辺アミノ酸残基に関しては Glu46 のカルボニル基 C=O 伸縮モードに特に着目する。

水素結合ネットワークを担うアミノ酸残基を改変した変異体タンパク質、発色団の構造を改 変したアナログ発色団を試料として用いる。これら一連の試料は、反応時定数など、異なる光反 応サイクルを有している。そのため、一連の遷移状態を用意することができ、系統的研究が行え る。

3.研究の方法

本研究で開発する時間分解分光システムは、チタンサファイアレーザー(繰り返し1kHz、出 力1mJ)を主要光源とし、出力の90%を光パラメトリック増幅(OPA)・差周波発生へと導入 し、中赤外領域の高強度振動励起光、振動プローブ光を得る。すでに、10uJの高強度中赤外光 が本装置により得られており、本研究目的を達成するために十分であると見込まれる。チタンサ ファイアレーザーの残り10%の出力光を用いて、反応トリガー光(400 nm)、電子状態プローブ白 色光を発生させる。

1 kHz のレーザーと同期させた2位相チョッパーを導入することで、わずかな吸収変化量(10-4)も精度よく取得することが可能となる。検出器は、電子状態プローブ白色光に対してはフォ トダイオードアレイを、中赤外プローブ光に対しては MCT 検出器を用いる。

高強度振動励起光に対しては、回折格子によってチャープ制御ができるようにする。チャープ量 と、到達した振動量子数、および反応過程の変化の相関を得ることで、振動モードの非調和性を 明らかにする。 試料として、光受容タンパク質 P Y P の野生型に加え、発色団周辺のアミノ酸残基を改変した 一連の変異体タンパク質、また発色団の構造を改変したアナログ発色団を用いる。この系統的比 較により、遷移状態に与える水素結合ネットワークの役割がより鮮明となる。

Super Continuum Probe

図 2 実験配置図

4.研究成果

(1)中赤外励起光

PYPの光反応サイクル途中において、発色団および周辺アミノ酸残基の特定振動モードを励起する。ここで、本研究では、1300-1800cm⁻¹の様々な中心周波数を持つ中赤外光を利用した。その一例を図3に示す。

(2)中赤外光のタイミング依存性

PYPの光反応サイクルに応じて、中赤外光を 様々なタイミングで照射し、反応中間体の生成にど のような影響を及ぼすのかを調べた。タイミング表 記として、Probe光を時刻0とする。したがって、

(a) 1340 cm⁻¹, (b) 1420 cm⁻¹, (c) 1500 cm⁻¹, (d) 1580 cm⁻¹, (e) 1660 cm⁻¹, (f) 1750 cm⁻¹.

図3 実験で用いた中赤外励起光の一例

反応トリガーとなる UV Pump および振動励起となる MIR Pump はマイナスの時刻として表記する。

図4に、UV PumpとMIR Pumpのタイミングを変化させて測定した過渡吸収スペクトルを示す。 一番上のプロットは、UV Pumpを照射しない条件、つまり電子基底状態における中赤外励起-可 視プローブ過渡吸収スペクトル(MIR Pumpから3.0 ps後)に相当する。中赤外光の中心周波数は

図 4 UV Pump と MIR Pump のタイミングを変化させたときの過渡吸収スペクトル (右は UV Pump なしを比較した図) 1620cm⁻¹である。400-450nm の負の信号が過渡吸収信号に相当し、450-550nm の正の信号が退色 信号に相当する。なお、450-550nm には試料セル由来の干渉信号が重なっている。上から2(青) 3(赤),4(緑)番目のプロットは、UV PumpとMIR Pumpとの時間差がそれぞれ47,947,0.2 ps である。それぞれ異なる反応中間体に対して振動励起を行ったことに相当する。これら3つ のスペクトルは形状、大きさともにほぼ一致している。つまり、反応中間体に依存した変化を観 測できていないことを意味している。図4右に、UV Pump光の有無の比較を行った。UV Pump光 の有無によって、スペクトルに違いがあることが確認できる。このUV 照射によるスペクトル変 化が、光反応サイクル過程での振動励起に関連したシグナルであるなら、UV PumpとMIR Pump とのタイミングによって変化すべきである。また、UV Pumpに先立ちMIR Pumpを照射した場合 には、変化はないはずである。しかしながら、今回観測したスペクトル変化はMIR Pumpのタイ

ミングには全く依存せず、結果、熱による効果 であり、光反応サイクル過程における遷移状態 の振動励起効果ではないとの結論を得た。

図 5 にさらに詳細に調べた結果を示す。UV Pump 光を-50ps に固定し、MIR Pump 光をその前 後で Delay 変化させたいときの過渡吸収強度を プロットしたものである。なお、観測した波長 は 505nm である。-50ps がちょうど UV Pump と MIR Pump が時間的に重なる条件である。MIR Pump 光の Delay を-52 から-45 ps の範囲(UV Pump に対して-2 -> +5 ps)で変化させても、 計測システムの誤差範囲内(<0.1mOD)で、変化 を確認することができなかった。

(3)中赤外光の振励起光の波長依存性

(2)と同様の実験を、中赤外光の波長を変えな がら行った。図6に中赤外光の振動数として、1620 および 1400cm⁻¹の結果を示す。Probe 光は時刻 0 に 固定し、UV Pump 光は-50ps. MIR Pump 光は-3.0ps である。青い実線、赤い実線はそれぞれ UV Pump 光 がない場合と、ある場合である。黒い実線は、MIR Pump 光がない場合の、通常の UV Pump-Probe スペ クトルを参考までに同じグラフに示した。UV Pump 光による変化の大きさが振動励起光によって異な ることが分かる。これらは、1300-1800cm⁻¹の様々な 振動励起光で行い、同様の結果を確認することがで きた。しかしながら、UV Pump 光と MIR Pump 光のタ イミングを様々に変えて実験を行ったが、タイミン グ依存した信号変化を観測することができなかっ た。つまり、光反応初期状態における電子基底状態 の情報は本研究により多く得られたが、遷移状態お よび反応中間体における振動励起の効果を見出す ことができなかった。

図5 MIR PumpのDelay依存性

(4)光かい離過程に対するアプローチ

これまで様々な実験研究を重ねてきたが、PYP の光反応過程における振動励起光の効果を確認 することはできていない。そこで、対象を PYP から金属錯体 $Mn_2(CO)_{10}$ に変えて同様の実験を行 った。 $Mn_2(CO)_{10}$ は近紫外光によって、 $2Mn(CO)_5$ にかい離することが知られている。図7に $Mn_2(CO)_{10}$ の紫外吸収スペクトル、および赤外吸収スペクトルを示す。UV Pump は 400nm. MIR Pump は 2014cm⁻¹として実験を行った。なお、反応生成物を確認するための Probe 光は、本研究では MIR Probe を用いた。

図 7 Mn₂(CO)₁₀の紫外・赤外吸収スペクトル

まずは図8左にUV Pump-MIR Probeの結果を示す。負のピークは、Mn₂(CO)₁₀の退色信号で、光反応によって分子数が減少したことを意味している。一方、1985cm⁻¹付近の正のピークは光かい離 生成物である2Mn(CO)₅の振動モードの過渡吸収信号である。

次に、UV Pump 直後に MIR Pump 光を照射し、光かい離生成物量の変化を MIR Probe 光によっ て測定した。つまり、MIR Pump によって、退色信号に変化があるかどうかに着目した。MIR Pump 光をマイナス領域からプラス 300ps まで変化させて測定したが、退色信号に変化は見られなか った。一方で、図 8 右の四角で囲った領域に時間依存する変化が見られた。解析の結果、これら は MIR Pump によって高い振動励起状態への再励起によるスペクトル変化であることが分かった。

図8 Mn₂(CO)₁₀のUV Pump-MIR Probe分光(左)とUV Pump - MIR Pump - MIR Probe分光

(5)まとめ

本研究では、近紫外光励起で生じる PYP 光反応サイクル過程において、発色団および周辺アミ ノ酸残基の振動モードを選択励起し、その後の反応過程への影響を明らかにすることを目的と した。PYP の光反応では、発色団近傍のカルボニル基 C=O 伸縮モードが重要な役割を果たして いること、また大量に存在するアミド I モードと比較して振動数シフトしていることから、選択 励起が可能であると見込んでいた。実際、MIR Pump 光の数%のエネルギーを目的のカルボニ ル基 C=O 伸縮モードに与えることには成功した。しかし、残りのエネルギーはタンパク質のア ミド I モードに与えてしまっている状況である。そこで、MIR Pump の挟線幅化も試みたが、 パルスエネルギーが十分ではなく、照射効果を観測することができなかった。本研究のためには、 パルス幅としてピコ秒程度で、かつ数十マイクロジュール以上の挟線幅中赤外光源が必要であ ると予測される。本研究の目的を果たすことはできなかったが、試行錯誤を続ける研究の中で、 タンパク質の振動モード間の相互作用が関係する様々なエネルギーフローについて明らかにす ることができた。これらの成果は学会・論文発表を行った。

5.主な発表論文等

〔雑誌論文〕 計4件(うち査読付論文 4件 / うち国際共著 0件 / うちオープンアクセス 0件)

1.著者名	4.巻
R. Nakamura, Y. Inagaki, T. Kamimura	57
2.論文標題	5 . 発行年
Polarization sensitive femtosecond mid-infrared spectrometer with tunable Fabry-Perot filter	2018年
and chirped-pulse upconversion	
3.雑誌名	6.最初と最後の頁
Applied Optics	10517-10521
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
https://doi.org/10.1364/A0.57.010517	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4. 巻	
T. Kamimura, H. Kuramae, T. Yamashiro, K. Nuno, Y. Umeda, S. Tsujimoto, R. Nakamura, T.	30	
Nishiyama, H. Horibe		
2.論文標題	5.発行年	
Analysis of Resist Removal Phenomenon Using Laser Irradiation	2017年	
3.雑誌名	6.最初と最後の頁	
J. Photopolym. Sci. Technol.	291-295	
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無	
https://doi.org/10.2494/photopolymer.30.291	有	
オープンアクセス	国際共著	
オープンアクセスではない、又はオープンアクセスが困難	-	

1.著者名	4.巻
R. Nakamura	383
2.論文標題	5 . 発行年
Simultaneous mid-infrared pulse generation and shaping in engineered quasi-phase-matched	2017年
nonlinear crystals	
3.雑誌名	6.最初と最後の頁
Optics Communications	545-550
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
https://doi.org/10.1016/j.optcom.2016.09.050	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
R. Nakamura, Y. Inagaki, H. Hata, N. Hamada, N. Umemura, T. Kamimura	55
2.論文標題	5.発行年
Wide-bandgap nonlinear crystal LiGaS2 for femtosecond mid-infrared spectroscopy with chirped	2016年
pulse upconversion	
3. 雑誌名	6.最初と最後の頁
Applied Optics	9365-9369
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
https://doi.org/10.1364/A0.55.009365	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計7件(うち招待講演 1件/うち国際学会 4件)

1. 発表者名 R. Nakamura, Y. Inagaki, N. Umemura, T. Kamimura

2.発表標題

Polarization Sensitive Femtosecond Mid-Infrared Spectrometer Using Chirped-Pulse Upconversion

3 . 学会等名

Pacific Rim Conference on Lasers and Electro-Optics (CLEO-PR)(国際学会)

4.発表年 2018年

1.発表者名 畑寛明,向井駿,東本慎也,中村亮介

2.発表標題

CuInS2コロイドの可視・中赤外時間分解分光

3.学会等名
第79回応用物理学会秋季学術講演会

4.発表年 2018年

1.発表者名

神村共住,布晃輔,山城鷹之,梅田悠史,辻本慎吾,倉前宏行,中村亮介,西山聖,堀邊英夫

2.発表標題

レーザー照射を用いたレジスト剥離現象の解析

3.学会等名

The 34th International Conference of Photopolymer Science and Technology (招待講演) (国際学会)

4 . 発表年 2017年

1.発表者名

M. Akimoto, Y. Inagaki, H. Hata, N. Hamada, R. Nakamura, N. Umemura, M. Yoshimura, and T. Kamimura

2 . 発表標題

Damage resistance of wide-bandgap nonlinear crystals for femtosecond mid-infrared spectrometer using chirped-pulse upconversion

3 . 学会等名

48th Annual Symposium on Optical Materials for High-Power Lasers(国際学会)

4.発表年 2016年

1.発表者名

K. Nuno, T. Yamashiro, S. Tuzimoto, R. Nakamura, S. Takagi, T. Nishiyama, H. Horibe, and T. Kamimura

2.発表標題

Laser removal of PVP without causing laser-induced surface damage

3 . 学会等名

48th Annual Symposium on Optical Materials for High-Power Lasers(国際学会)

4.発表年 2016年

.

1.発表者名 稲垣嘉清,畑秀文,神村共住,梅村信弘,濱田格雄,中村亮介

2.発表標題

和周波混合を用いた周波数領域2次元赤外分光法の開発11

3.学会等名

日本物理学会2016年秋季大会

4.発表年 2016年

1.発表者名

北林和樹,神村共住,濱田格雄,中村亮介

2.発表標題

リアルタイム時系列光子計測によるタンパク質のミリ秒構造追跡

3 . 学会等名

日本物理学会2016年秋季大会

4.発表年 2016年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----