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研究成果の概要（和文）：人間と空間を共有して作業を行う協働ロボットを対象として、どのようなロボットの
動きに対して人間が安心かつ心地よさを感じるのかを明らかにした。手渡しとリーチング作業を代表的な作業と
して選定し、人間同士/人間―ロボットによる協働作業実験行い、人間の感覚とロボットの動作との関係を調査
した。手渡しの際には、自分と相手の位置関係や身体的・社会的特徴を基に相手の動作を推定し、自己の動作を
上手く調整していること、近接空間で作業を行う場合は、ロボット動作の不確定性が人間に不快感を与える大き
な要因であり、人間の作業動作の変化から不快度を推測できることを示した。

研究成果の概要（英文）：In this research, we clarified what kind of robot movements a human feels 
safe and comfortable with, in human-robot co-worker scenarios. We adopted object handover and arm 
reaching tasks as typical collaboration ones. Human-human and human-robot collaboration experiments 
were conducted and the relationships between human feelings and robot movements were explored. For 
object handover, it was found that humans can estimate their partner’s handover behavior very well 
based on the physical and social characteristics of their own and their partner. Our experiments 
also confirmed that the perceived uncertainty in the robot movement is the fundamental determinant 
of human discomfort when a robot is working in the vicinity of humans. These results can contribute 
to planning robot motions and comfortable collaboration systems.

研究分野：ロボティクス

キーワード： 協働ロボット　行動神経学　動作生成
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研究成果の学術的意義や社会的意義
本研究の成果は、人間と空間を共有して作業を行う協働ロボットの動作生成やシステムデザインに貢献するもの
である。例えば物の手渡しを行う場合、本研究で示した位置関係や相手の身体的・社会的モデルに基づいたロボ
ット動作を生成することで、相手に違和感を与えない快適な受け渡しを可能とする。また一緒に作業を行う人間
から認識される不確定性を低減するロボット動作やシステムの設計を行うことで、より快適な協働作業を実現す
る。

※科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に
ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。
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１．研究開始当初の背景 

‘Co-worker’ scenarios, where robots and humans work closely within each other’s workspace, 
have thus been a topic of great recent interest in the robotics community. For example, major robot 
companies have developed collaborative robots and several recent research projects have explored 
robot behaviors in co-worker scenarios. However, these projects and companies have mainly 
concentrated on robot control for safe, compliant, and efficient human interactions. On the other 
hand, an additional critical aspect, human perception, has been almost not explored. Even if a 
robot control is very ‘safe’, a human will be comfortable with it only if he/she perceives the robot 
to be safe. However, it has not been shown what aspects of the robot’s behavior would enable this 
trust. 

 
２．研究の目的 

In this research, we clarify what kind of robot movements a human feels safe and comfortable 
with, in manipulator co-worker scenarios. We adopted object handover and arm reaching tasks as 
typical collaboration ones. Human collaboration experiments were conducted for these tasks and 
the relationships between human feelings and robot movements were explored by analyzing the 
obtained experimental data. 
 
３．研究の方法 
(1) Object handover 

Handovers require one individual’s hand to enter the ‘peri-personal space’ of another individual, 
which is a space around an individual’s body that they are known to be protective of. Studies of 
peri-personal space have shown that it is affected by an individual’s reach and hence we 
hypothesized that an individual’s size and arm length affect comfortable handovers. Intuitively, we 
hypothesized that social aspects, such as gender and social dominance of individuals, also affect 
the movements. Here, we focused on and analyzed the location of object transfer-how humans 
determine it, and whether and how the specific characteristics of interacting partners affect it. 

Fig. 1 shows our experiment setup and the whole experiment sequence. Twenty participants 
were asked to give(receive) objects to(from) the same three representative partners (partners for 
short) at one of three inter-personal distances (IDs). To examine the role of visual information, 
the subjects performed handovers in blindfolded and normal situations (shown by No-vision 
(nVF) and Vision (VF) sessions).  

The subjects were divided into two groups, which include 10 participants and 3 partners each, 
to reduce the burden on partners. The 10 participants in group 1 were all males (age of 23.7±1.3, 
height of 174±6.7 cm, arm length of 54.7±3.4 cm). They worked with 2 males and a female 
partner (partner1-male, 23 years, 171 cm height, 52 cm arm length; partner2-male, 25 years, 180 
cm height, 58 cm arm length; partner3-female, 22 years, 168 cm height, 55 cm arm length). Group-
2 included 4 males (age of 57.0±8.15, height of 169.3±5.12 cm, arm length of 53.0±1.73 cm) 
and 6 females (age of 42.2±17.1, height of 156.8±3.48 cm, arm length of 50.5±2.29 cm). They 
worked with 2 males and a female partner (partner1-male, 20 years, 169 cm height, 54.5 cm arm 
length; partner2-male, 22 years, 181 cm height, 58.5 cm arm length; partner3-female, 20 years, 
160 cm height, 50 cm arm length). All participants and partners were right-handed. 

 

Fig. 1: Experiment sequence for handovers 



  Three IDs were defined for each pair as 0.7AL, AL, and 1.3AL, where AL is the sum of their 
arm lengths. The participant and partner were asked to stand at the determined positions, look at 
each other, and then cover their eyes with an eye cover for nVF sessions. They wore a wireless 
earbud in their ear and were instructed to make a handover movement when a beep sounds, hold 
the extended arm and bring the arm back when the second beep sounds. Unknown to subjects, we 
introduced a delay between the beeps to the participants and partners for nVF sessions to avoid 
collisions, which ensured that they made their movements one after another. The participants 
performed nVF sessions first, which include 15 (5×3IDs) handovers, as a giver and a receiver (the 
order is randomized), and then did VF sessions, which includes 9 (3×3IDs) handovers. After 
completing both nVF and VF sessions, the participants repeated the whole sequence with other 
partners. At last, the participants and partners were asked to answer a social dominance orientation 
questionnaire [1] for measuring their social dominance.  
 The movements made by the participants were recorded by a motion capture system with 

reflective markers (on their hand/arm/shoulder), analyzed the systematic changes with each 
partner, and compared with and without visual feedback. 
 

(2) Arm reaching task 
Here, we concentrated on the robot movements working in the vicinity of humans because 

humans will feel more uncomfortable when a robot is very close enough to collide with them. We 
considered four different models of human discomfort and designed an empirical human-robot 
co-worker task to quantify the discomfort experienced by the human by analyzing behavioral 
changes and to examine which model of discomfort explains the changes best. 

For defining our discomfort model, we first defined the undisturbed human trajectory (UHT) 
as a human movement trajectory when performing his/her task without disturbance from a robot 
co-worker. Then, the following four discomfort models were constructed using the position of the 
robot end-effector relative to the UHT as a parameter based on previous human behavioral studies 
and our intuition. 
 Robot Proximity (RP) model: the proximity of the robot to the UHT is the key determinant,  
 Robot Velocity (RV) model: the velocity of the robot movement is the key determinant, 
 Robot Range (RR) model: the range of the robot movement is the key determinant, and  
 Robot Uncertainty (RU) model: the perceived uncertainty of the robot movement is the key 

determinant. The standard deviation of the distance when the robot is closest to the human 
is considered. 

Fig. 2-(a) shows our experiment setup. The participants sat on a chair in front of a table, on 
which the start point and the target line were shown. A 7-degrees of freedom robot was installed 
on a stand on the left side of the table. The robot grabbed a stick covered with soft material and 
moved the end-effector back and forth to the UTH during the experiments. The participants were 
instructed to repeat the movement of sliding their hand on the table from the start point to a goal 
on the target line while holding a stick. They were asked to make a ‘one shot’ reaching movement 
(without stops) to the target line while avoiding bumping into the robot. Any point on the target 
line could be freely selected for each movement. A repetitive pattern of beeps was utilized to 
instruct the participants on when to start and complete their reaches. Based on the beeps, each 
reaching movement was repeated every second. The timing of beeps was designed to synchronize 
the human movement with the robot movement, such that the robot would sufficiently interfere 
and potentially cause them discomfort.  

We designed three robot movement patterns to qualitatively distinguish the key determinant of 
discomfort by using our four discomfort models (Fig. 2-(b)). The patterns were determined by the 
three parameters: the minimum/maximum distances of the robot end-effector from the UHT and 
the variation in the two parameters mentioned above. For pat-1 to 3, we set the same values to the 

 
Fig. 2: Experiment settings for arm reaching task 
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minimum/maximum distances but set the different values to the variation, 0mm, 40mm, and 
80mm, respectively. The average minimum distance of the robot from the UHT is the smallest in 
pat-1 and becomes large in pat-2 and 3. Therefore, the RP model predicts that the discomfort is 
highest for pat-1, less for pat-2, and the least for pat-3. For the velocity, the mean speed of the 
robot end-effector is highest for pat-1 because we set the same peak speed in all the patterns and 
it remains at the peak speed for a longer time for longer movement. The RV model thus predicts 
the highest discomfort for pat-1, less for pat-2, and the least for pat-3. The RR model predicts the 
same discomfort for all patterns because the movement ranges are the same. The RU model, which 
is determined by the standard deviation of the minimum distance, predicts that the discomfort is 
minimal for pat-1, progressively more for pat-2, and the highest for pat-3. 

Fig. 2-(c) presents the experiment sequence, which includes four sessions. The first one served 
as a preliminary session to accustom the participants to follow the sound cues while working in the 
proximity of the disturbing robot, which moved far away compared with the following three 
experimental sessions. Each experimental session was divided into three phases (of 10, 100, and 
10 trials) with and without robot disturbances. The robot movement patterns were selected 
randomly for each session. After a session, the participants were asked to answer the Self-
Assessment Manikin (SAM) [2] survey to assess their emotional state during the corresponding 
session. 21 participants (15 males, 6 females of 14 nationalities, aged 20-43, mean 27.9± SD 6.32) 
joined in the experiment. The arm movements made by the participants and the positions of the 
sticks were recorded by a motion capture system with reflective markers.  

 
All experiments conducted in this research were approved by the local ethics committee at the 

National Institute of Advanced Industrial Science and Technology (AIST). All participants were 
naive to the motive of the experiment and gave informed consent to participate in the study. 
 

４．研究成果 
(1) Object handover 

To investigate how the handovers were changed when the participants were givers and receivers, 
with or without visual feedback, with respect to the characteristics of them and their partners, we 
looked at the following three parameters: arm extension (ex,y,z : defined how much the participant 
extended their arm in the nVF sessions during a handover), handover gap (gx,y,z : defined as the 
absolute difference between the hand positions of the giver and receiver in the nVF sessions), 
correction (Δex,y,z : defined as the difference between the positions of participant’s hand at the end 
of their handover in the nVF session and in the VF session). Here, the hand position was 
determined by the position of the reflective marker attached to the MP joint. 

We first performed a 2-way ANOVA of the arm extensions on the factors ‘ID’ and ‘partner’. A 
significant main effect of ‘ID’ was observed on the arm extensions. Interestingly, a significant main 
effect of ‘partner’ on the arm 
extension towards the partner 
(ey) was also observed. The 
results show that the 
participants clearly modulated 
their handover behavior in the 
3D space to account for the IDs 
and also modulated their 
anterior-posterior arm 
extension (ey) systematically 
according to the partner they 
interacted with.  

Then, we created linear 
regression models for the 
anterior-posterior arm 
extension (ey) to investigate 
what aspect of the partner’s 
features affects the handover 
behavior. By using the Akaike 
Information Criteria (AIC), we 
found that the model with 
parameters of both the 
participant’s own and his 
partner’s features (height, 
gender, and dominance) and 
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the ID, can explain the arm extensions very well. Gender was set to 0 when the gender of the 
participant and the partner were the same and 1 when they were different. Arm length was not 
used because it was correlated with height.  

Fig. 3 shows the regression weights on each factor. As predicted by the ANOVA, the participants 
modulated their ey with ID both as a giver and receiver. As a common tendency for both givers and 
receivers, it is confirmed that the participants extended their arms when their own height is high 
or the partner’s dominance is high; the arms were extended less when the partner is tall; the gender 
has little effect on the arm extensions. Interestingly, the participants’ own dominance led to an 
increase of ey as a giver, but a decrease of ey as a receiver. Fig. 4 shows the handover gap (gx,y,z ) 
and the correction (Δex,y,z). In the extension direction, the gap (gy) is small in the nVF sessions, 
and the correction (Δey) is also small. On the other hand, the gap for the z-axis direction (gz) in 
the nVF sessions and the correction (Δez) are large. From these results, it can be confirmed that 
humans can estimate the anterior-posterior handover position of their partner, and as a 
consequence, adjust their hand position to meet their partner’s hand. The prediction based on the 
partner’s model is mainly utilized for the anterior-posterior movements, while the adjustment 
using visual feedback occurs for the other directions during handovers. These insights are very 
crucial for the design of robot handovers. For example, it is sufficient for robots to control 
mediolateral and inferior-superior handover movements by visual servoing, but for making 
anterior-posterior movements, robots need to have a good understanding of human behavior. Our 
linear regression model will help to improve the understanding.  

 
(2) Arm reaching task 
  During the experiments, we observed that the 
participants performed a straight-line reach 
when the robot stopped, but their reach deviated 
away from the robot when it came close to them 
in the robot phase. Fig. 5 shows a sample of 
subject trajectories in the robot phase. There 
were differences in the trajectory deviations 
depending on the robot movement patterns. We 
performed a 2-way ANOVA of the deviations on 
the factors ‘pattern’ and ‘trial’ between the 
11thand 100th trials in the robot phase (the first 
10 trials were omitted for the stabilization of the 
trajectories). As a significant main effect of 
‘pattern’ was observed but ‘trial’ and the 
interaction were not, we adopted the median 
trajectory deviations for each pattern to quantify 
the trajectory deviations. In addition, we found 
a strong correlation between the median 
trajectory deviation and the anxiety reported by 
the subjects in the SAM questionnaire. These 
allowed us to use the median trajectory deviation 
as a behavioral measure of the discomfort 
perceived by the participants. 
  In Fig. 6, the across-subject median trajectory 
deviations were plotted. Comparing the result 
with our discomfort models, it was shown that 
the RU model can clearly explain the data. Our experiments thus confirmed that uncertainty in 
the robot movement was the fundamental determinant of human discomfort. Previous studies in 
social neuroscience as well as for robot trust, have observed that the ‘trust’ felt by a human towards 
interacting agents is influenced by the predictability of the agents’ behavior, especially for their 
decision-making. Here, we clearly show that by using behavioral measures, uncertainty is also 
critical at the level of robot movement in human-robot co-worker scenarios. It is also important to 
note that the human discomfort observed here is modulated not by the robot movement 
uncertainty itself, but rather by the perceived robot movement uncertainty by humans. The result 
can contribute to planning robot motions working in the vicinity of human workers. 
 
[1] F. Pratto et al.: “Social dominance orientation: A personality variables predicting social and 
political attitudes,” J. of Personality and Social Psychology, vol. 67, no. 4, pp. 741-763, 1994. 
[2] M. M. Bradley and P. J. Lang: Measuring emotion: The self-assessment manikin and the 
semantic differential, J. of Behavior Therapy and Experimental Psychiatry, vol. 25, no. 1, pp. 49–
59, 1994. 

 
Fig.5: Sample plots of trajectory deviations 

 
Fig. 6: Model validation. The median 

trajectory deviations are superimposed over 
our discomfort model trend plots. 
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