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In this research, we clarified what kind of robot movements a human feels
safe and comfortable with, in human-robot co-worker scenarios. We adopted object handover and arm
reaching tasks as typical collaboration ones. Human-human and human-robot collaboration experiments
were conducted and the relationships between human feelings and robot movements were explored. For
object handover, it was found that humans can estimate their partner’ s handover behavior very well
based on the physical and social characteristics of their own and their partner. Our experiments
also confirmed that the perceived uncertainty in the robot movement is the fundamental determinant
of human discomfort when a robot is working iIn the vicinity of humans. These results can contribute
to planning robot motions and comfortable collaboration systems.
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1. WFIEBRAA SO 5

‘Co-worker’ scenarios, where robots and humans work closely within each other’s workspace,
have thus been a topic of great recent interest in the robotics community. For example, major robot
companies have developed collaborative robots and several recent research projects have explored
robot behaviors in co-worker scenarios. However, these projects and companies have mainly
concentrated on robot control for safe, compliant, and efficient human interactions. On the other
hand, an additional critical aspect, human perception, has been almost not explored. Even if a
robot control is very ‘safe’, a human will be comfortable with it only if he/she perceives the robot
to be safe. However, it has not been shown what aspects of the robot’s behavior would enable this
trust.

2. WO B

In this research, we clarify what kind of robot movements a human feels safe and comfortable
with, in manipulator co-worker scenarios. We adopted object handover and arm reaching tasks as
typical collaboration ones. Human collaboration experiments were conducted for these tasks and
the relationships between human feelings and robot movements were explored by analyzing the
obtained experimental data.

3. WD TA
(1) Object handover

Handovers require one individual’s hand to enter the ‘peri-personal space’ of another individual,
which is a space around an individual’s body that they are known to be protective of. Studies of
peri-personal space have shown that it is affected by an individual’s reach and hence we
hypothesized that an individual’s size and arm length affect comfortable handovers. Intuitively, we
hypothesized that social aspects, such as gender and social dominance of individuals, also affect
the movements. Here, we focused on and analyzed the location of object transfer-how humans
determine it, and whether and how the specific characteristics of interacting partners affect it.

Fig. 1 shows our experiment setup and the whole experiment sequence. Twenty participants
were asked to give(receive) objects to(from) the same three representative partners (partners for
short) at one of three inter-personal distances (IDs). To examine the role of visual information,
the subjects performed handovers in blindfolded and normal situations (shown by No-vision
(nVF) and Vision (VF) sessions).

The subjects were divided into two groups, which include 10 participants and 3 partners each,
to reduce the burden on partners. The 10 participants in group 1 were all males (age of 23.7 1.3,
height of 174+6.7 cm, arm length of 54.7+3.4 cm). They worked with 2 males and a female
partner (partnerl-male, 23 years, 171 cm height, 52 cm arm length; partner2-male, 25 years, 180
cm height, 58 cm arm length; partner3-female, 22 years, 168 cm height, 55 cm arm length). Group-
2 included 4 males (age of 57.0+8.15, height of 169.3%5.12 cm, arm length of 53.0=1.73 cm)
and 6 females (age of 42.2+17.1, height of 156.8 £3.48 cm, arm length of 50.5+2.29 cm). They
worked with 2 males and a female partner (partnerl-male, 20 years, 169 cm height, 54.5 cm arm
length; partner2-male, 22 years, 181 cm height, 58.5 cm arm length; partner3-female, 20 years,
160 cm height, 50 cm arm length). All participants and partners were right-handed.
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Fig. 1: Experiment sequence for handovers



Three IDs were defined for each pair as 0.7AL, AL, and 1.3AL, where AL is the sum of their
arm lengths. The participant and partner were asked to stand at the determined positions, look at
each other, and then cover their eyes with an eye cover for nVF sessions. They wore a wireless
earbud in their ear and were instructed to make a handover movement when a beep sounds, hold
the extended arm and bring the arm back when the second beep sounds. Unknown to subjects, we
introduced a delay between the beeps to the participants and partners for nVF sessions to avoid
collisions, which ensured that they made their movements one after another. The participants
performed nVF sessions first, which include 15 (5 X 3IDs) handovers, as a giver and a receiver (the
order is randomized), and then did VF sessions, which includes 9 (3 X3IDs) handovers. After
completing both nVF and VF sessions, the participants repeated the whole sequence with other
partners. At last, the participants and partners were asked to answer a social dominance orientation
questionnaire [1] for measuring their social dominance.

The movements made by the participants were recorded by a motion capture system with
reflective markers (on their hand/arm/shoulder), analyzed the systematic changes with each
partner, and compared with and without visual feedback.

(2) Arm reaching task

Here, we concentrated on the robot movements working in the vicinity of humans because
humans will feel more uncomfortable when a robot is very close enough to collide with them. We
considered four different models of human discomfort and designed an empirical human-robot
co-worker task to quantify the discomfort experienced by the human by analyzing behavioral
changes and to examine which model of discomfort explains the changes best.

For defining our discomfort model, we first defined the undisturbed human trajectory (UHT)
as a human movement trajectory when performing his/her task without disturbance from a robot
co-worker. Then, the following four discomfort models were constructed using the position of the
robot end-effector relative to the UHT as a parameter based on previous human behavioral studies
and our intuition.

* Robot Proximity (RP) model: the proximity of the robot to the UHT is the key determinant,

* Robot Velocity (RV) model: the velocity of the robot movement is the key determinant,

* Robot Range (RR) model: the range of the robot movement is the key determinant, and

* Robot Uncertainty (RU) model: the perceived uncertainty of the robot movement is the key

determinant. The standard deviation of the distance when the robot is closest to the human
is considered.

Fig. 2-(a) shows our experiment setup. The participants sat on a chair in front of a table, on
which the start point and the target line were shown. A 7-degrees of freedom robot was installed
on a stand on the left side of the table. The robot grabbed a stick covered with soft material and
moved the end-effector back and forth to the UTH during the experiments. The participants were
instructed to repeat the movement of sliding their hand on the table from the start point to a goal
on the target line while holding a stick. They were asked to make a ‘one shot’ reaching movement
(without stops) to the target line while avoiding bumping into the robot. Any point on the target
line could be freely selected for each movement. A repetitive pattern of beeps was utilized to
instruct the participants on when to start and complete their reaches. Based on the beeps, each
reaching movement was repeated every second. The timing of beeps was designed to synchronize
the human movement with the robot movement, such that the robot would sufficiently interfere
and potentially cause them discomfort.

We designed three robot movement patterns to qualitatively distinguish the key determinant of
discomfort by using our four discomfort models (Fig. 2-(b)). The patterns were determined by the
three parameters: the minimum/maximum distances of the robot end-effector from the UHT and
the variation in the two parameters mentioned above. For pat-1 to 3, we set the same values to the
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minimum/maximum distances but set the different values to the variation, 0Omm, 40mm, and
80mm, respectively. The average minimum distance of the robot from the UHT is the smallest in
pat-1 and becomes large in pat-2 and 3. Therefore, the RP model predicts that the discomfort is
highest for pat-1, less for pat-2, and the least for pat-3. For the velocity, the mean speed of the
robot end-effector is highest for pat-1 because we set the same peak speed in all the patterns and
it remains at the peak speed for a longer time for longer movement. The RV model thus predicts
the highest discomfort for pat-1, less for pat-2, and the least for pat-3. The RR model predicts the
same discomfort for all patterns because the movement ranges are the same. The RU model, which
is determined by the standard deviation of the minimum distance, predicts that the discomfort is
minimal for pat-1, progressively more for pat-2, and the highest for pat-3.

Fig. 2-(c) presents the experiment sequence, which includes four sessions. The first one served
as a preliminary session to accustom the participants to follow the sound cues while working in the
proximity of the disturbing robot, which moved far away compared with the following three
experimental sessions. Each experimental session was divided into three phases (of 10, 100, and
10 trials) with and without robot disturbances. The robot movement patterns were selected
randomly for each session. After a session, the participants were asked to answer the Self-
Assessment Manikin (SAM) [2] survey to assess their emotional state during the corresponding
session. 21 participants (15 males, 6 females of 14 nationalities, aged 20-43, mean 27.9+ SD 6.32)
joined in the experiment. The arm movements made by the participants and the positions of the
sticks were recorded by a motion capture system with reflective markers.

All experiments conducted in this research were approved by the local ethics committee at the
National Institute of Advanced Industrial Science and Technology (AIST). All participants were
naive to the motive of the experiment and gave informed consent to participate in the study.

4. WHIERCR
(1) Object handover

To investigate how the handovers were changed when the participants were givers and receivers,
with or without visual feedback, with respect to the characteristics of them and their partners, we
looked at the following three parameters: arm extension (e,,.: defined how much the participant
extended their arm in the nVF sessions during a handover), handover gap (g,,.: defined as the
absolute difference between the hand positions of the giver and receiver in the nVF sessions),
correction (A e,,,,: defined as the difference between the positions of participant’s hand at the end
of their handover in the nVF session and in the VF session). Here, the hand position was
determined by the position of the reflective marker attached to the MP joint.

We first performed a 2-way ANOVA of the arm extensions on the factors ‘ID’ and ‘partner’. A
significant main effect of ‘ID’” was observed on the arm extensions. Interestingly, a significant main
effect of ‘partner’ on the arm

extension towards the partner
(e,) was also observed. The
results  show  that  the
participants clearly modulated
their handover behavior in the
3D space to account for the IDs

and also modulated their
anterior-posterior arm
extension (e,) systematically

according to the partner they
interacted with.

Then, we created linear
regression models for the
anterior-posterior arm
extension (e,) to investigate
what aspect of the partner’s
features affects the handover
behavior. By using the Akaike
Information Criteria (AIC), we
found that the model with

parameters of  both  the
participant’s own and his
partner’s  features  (height,

gender, and dominance) and
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the ID, can explain the arm extensions very well. Gender was set to 0 when the gender of the
participant and the partner were the same and 1 when they were different. Arm length was not
used because it was correlated with height.

Fig. 3 shows the regression weights on each factor. As predicted by the ANOVA, the participants
modulated their ¢, with ID both as a giver and receiver. As a common tendency for both givers and
receivers, it is confirmed that the participants extended their arms when their own height is high
or the partner’s dominance is high; the arms were extended less when the partner is tall; the gender
has little effect on the arm extensions. Interestingly, the participants’ own dominance led to an
increase of e, as a giver, but a decrease of e, as a receiver. Fig. 4 shows the handover gap (g,..)
and the correction (A e,,,.). In the extension direction, the gap (g,) is small in the nVF sessions,
and the correction (A e,) is also small. On the other hand, the gap for the z-axis direction (g,) in
the nVF sessions and the correction (A ¢,) are large. From these results, it can be confirmed that
humans can estimate the anterior-posterior handover position of their partner, and as a
consequence, adjust their hand position to meet their partner’s hand. The prediction based on the
partner’s model is mainly utilized for the anterior-posterior movements, while the adjustment
using visual feedback occurs for the other directions during handovers. These insights are very
crucial for the design of robot handovers. For example, it is sufficient for robots to control
mediolateral and inferior-superior handover movements by visual servoing, but for making
anterior-posterior movements, robots need to have a good understanding of human behavior. Our
linear regression model will help to improve the understanding.

(2) Arm reaching task
During the experiments, we observed that the

participants performed a straight-line reach s Ut gt ine
when the robot stopped, but their reach deviated - AN
. > h trajectori

away from the robot when it came close to them ::::[ #:\ v for diferont robot
. . | = X movement patterns
mbt'he robgt pha‘tse.‘Flg}.l 5 leows i sam;%l}el: of / s .
subject trajectories in the robot phase. There obot stick . "

] ] p (ernd-effsel:ctor) starting point ::rl:erres

were differences in the trajectory deviations
depending on the robot movement patterns. We

robot
co-worker
stand

V X
/ human
\participant /

performed a 2-way ANOVA of the deviations on
the factors ‘pattern’ and ‘trial’ between the
11tand 100™ trials in the robot phase (the first
10 trials were omitted for the stabilization of the

Fig.5: Sample plots of trajectory deviations

p=0.04 corrected

trajectories). As a significant main effect of 2 7°
‘pattern’ was observed but ‘trial’ and the ETGO
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trajectory deviations for each pattern to quantify g £ s0 7
the trajectory deviations. In addition, we found §8 ~
a strong correlation between the median £z %
trajectory deviation and the anxiety reported by g
the subjects in the SAM questionnaire. These g 2
allowed us to use the median trajectory deviation
pat-1 pat-3

as a behavioral measure of the discomfort
perceived by the participants.

In Fig. 6, the across-subject median trajectory
deviations were plotted. Comparing the result
with our discomfort models, it was shown that
the RU model can clearly explain the data. Our experiments thus confirmed that uncertainty in
the robot movement was the fundamental determinant of human discomfort. Previous studies in
social neuroscience as well as for robot trust, have observed that the ‘trust’ felt by a human towards
interacting agents is influenced by the predictability of the agents’ behavior, especially for their
decision-making. Here, we clearly show that by using behavioral measures, uncertainty is also
critical at the level of robot movement in human-robot co-worker scenarios. It is also important to
note that the human discomfort observed here is modulated not by the robot movement
uncertainty itself, but rather by the perceived robot movement uncertainty by humans. The result
can contribute to planning robot motions working in the vicinity of human workers.

robot movement patterns
Fig. 6: Model validation. The median
trajectory deviations are superimposed over
our discomfort model trend plots.
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