研究成果報告書 科学研究費助成事業

今和 3 年 6 月 1 7 日現在 機関番号: 13102 研究種目: 基盤研究(B)(一般) 研究期間: 2017~2020 課題番号: 17H03427 研究課題名(和文)光電極のエネルギー変換効率を革新的に向上させる酸化物 - 窒化物傾斜構造の創製 研究課題名(英文)Fabrication of oxide-nitride gradient structure to enhance energy conversion efficiency of photoelectrode 研究代表者 西川 雅美(Nishikawa, Masami) 長岡技術科学大学・工学研究科・准教授

交付決定額(研究期間全体):(直接経費) 11,600,000円

研究者番号:20622393

研究成果の概要(和文):エキシマレーザ照射プロセスにプラズマを融合し、その効果について検討した。酸素 プラズマ内で有機金属膜にレーザ照射すると、空気中でレーザ照射する場合と比べて、より酸素欠損が少ない状 態で有機金属から酸化物相へと結晶化した。また、窒素プラズマ内でレーザ照射すると、酸化物相が得られる が、酸化物相中には窒素が導入されることがわかった。さらに、窒素プラズマ中で金属膜にレーザ照射すると、 特にTi(相)膜の場合において、格子間に窒素が導入される挙動を示した。金属の種類によって、窒素の導入 されやすさは異なり、レーザ照射下の薄膜の温度と金属の融点が重要な因子であると推測された。

研究成果の学術的意義や社会的意義 窒化物の作製や酸化物相への窒素導入は、一般的には、窒素雰囲気中もしくはアンモニア雰囲気中で、比較的高 い熱処理プロセスを必要とする。そのため、窒化物もしくは酸化物相へ窒素導入する場合、周辺材料や下地材料 の熱耐性を考慮する必要がある。エキシマレーザ照射法に窒素プラズマを融合したプロセスは、低温で窒素を導 入することが可能であるため、窒素含有材料の応用範囲の拡大につながる。

研究成果の概要(英文): The combined effect of O2 and N2 plasma to the excimer-laser irradiation process was examined. Metal-organic precursor films were irradiated by the laser in O2 plasma, the films were crystalized to the metal-oxide with less oxygen vacancies than those prepared by the laser-irradiation in air. Then, the metal-organic precursor films were irradiated by the laser in N2 plasma, the films were also crystalized to the metal-oxide but included N. Metal films were irradiated by the laser in N2 plasma, especially in the case of Ti, N atoms were introduced into in Ti lattice. The introduction behaviors of N2 depended on the type of metal and it was concluded that the temperature of the film under laser irradiation and the melting point of the metal are dominant factor for introduction of N2.

研究分野: 無機化学

キーワード: エキシマレーザ 低温結晶化

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

太陽光と水から水素を製造できる「光電極」のエネルギー変換効率を向上には、光励起した電 子と正孔を高効率で分離することが重要である。電子と正孔を空間的に分離するには、ポテンシ ャル勾配を設けることが必要である。金属酸化物では、価電子帯は酸素の軌道から形成されてい ることがほとんどである。金属窒化物は、価電子帯は窒素であり、その酸化還元電位は酸素と大 きく異なる。そのため、金属酸化物とに窒素を拡散させることで、光電極の膜厚方向にポテンシ ャル勾配を形成させることができれば、光電極のエネルギー変換効率を向上できると考えた。そ のために、まず、酸化物物の特性を変化させずに窒化物を積層するために、低温で窒化物を積層 するプロセス技術、および酸化物に窒素を拡散するプロセス技術を開発する必要があった。

2.研究の目的

これまで、有機金属の前駆体膜にエキシマレーザを照射する「光 MOD 法」は、金属酸化物膜 を低温で作製できることがわかっている。これまでに、光 MOD 法を用いて、光電極材料である Cu₂O 上に TiO₂ 膜を成膜してきた。通常の熱処理プロセスでは、Cu₂O は、熱によって簡単に酸 化されるため、結晶性の TiO₂ を積層することは困難であるが、光 MOD 法を用いることによっ て、Cu₂O の特性を変化させることなく、結晶性 TiO₂ を積層可能であることを明らかにしてき た。つまり、光 MOD 法は、下地に熱ダメージなしで金属酸化物を積層可能であることを示して いる。しかし、光 MOD 法で成膜できるのは、金属酸化物のみに留まっており、金属窒化物につ いては検討されていない。そこで、本研究では、窒素プラズマとエキシマレーザ照射法を融合し た新規プロセスによって、金属窒化物を低温で成膜することを目的とした。本研究では、先ず、 既存の光 MOD 法に酸素プラズマの融合効果を確認し、その後、出発薄膜原料として MOD と金 属膜を用いて、エキシマレーザ照射プロセスへの窒素プラズマの融合効果を確認した。

3.研究の方法

図1に示すシステムを組み、プラズマ装置内にエキシマレーザ(KrF レーザ)を照射可能とした。プラズマは、酸素プラズマおよび窒素プラズマ相互に可変とした。前駆体(レーザー照射前の)膜は、Ti と Ta の有機金属膜(高純度化学製 MOD 溶液をガラス基板もしくは Cu₂0 光電極上にスピンコートにより塗布し、100 で 10 分間乾燥させた後に、300 で 10 分間仮焼成を行って得た)、Ti、Ta と Si の金属のスパッタ膜(基板はいずれもガラス基板)を用いた。検討したプロセスパラメータは、KrF レーザのフルエンス、照射時間とした。なお、KrF レーザの繰り返し周波数は 10 Hz に固定した。

図1 本プロセス装置の概略図

4.研究成果

(1)光 MOD 法への酸素プラズマの融合効果

まず、光 MOD 法への酸素プラズマ融合効果を確認した。Cu₂O 光電極上に Ti の MOD 膜を塗布し、 100 で 10 分間の乾燥および 200 で 10 分間の仮焼成を施した前駆体膜に、酸素プラズマ中で KrF レーザーを照射した試料の XRD パターンを図 2 に示す。参照として、空気中でレーザー照射 した場合、大気圧ではルチルに起因する回折ピークが確認されたが、低圧では、TiO₂相に起因す る回折ピークは観測されなかった。これは、前駆体膜の残存した有機物の分解が、低圧下では進 行しなかったために、結晶化が阻害された結果と考えられる。一方、酸素プラズマ中で照射した 場合、低圧下でもアナターゼ相およびルチル相に起因するピークが確認された。これは、酸素プ ラズマ中の酸素および活性酸素種が有機物に分解に寄与したためである。さらに、ルチル相に対 して、アナターゼ相は、酸素リッチな環境で生成しやすいことが分かっている。そのため酸素プ ラズマ中ではアナターゼ相が優勢に生成したことから、活性酸素種が通常の酸素分子よりも酸 化力が高いことに起因すると思われる。図 3 に空気中(大気圧)と酸素プラズマ中で作製した TiO₂のTi2p_{2/3}XPS スペクトルを示す。酸素プラズマ中で作製した TiO₂のTi2p_{2/3}CP スペクトルを示す。酸素プラズマ中で作製した TiO₂のTi2p_{2/3} のピークは、 低結合エネルギー側がシャープであるのに対して、空気中でレーザ照射して生成した TiO₂ は 0.8 eV ほど低エネルギー側に膨らみが見られた。酸素欠損が多量に存在する TiO₂ (Black TiO₂) では、低エネルギー側に 0.8 eV シフトすることが報告されているため、空気中で作製した TiO₂

には酸素欠損が比較的多く存在することを示している。そして、酸素プラズマ中で作製すること で、酸素欠損が減少することが分かり、これは、酸素プラズマ中の原子状の酸素等の活性酸素種 が有効に酸素欠損部を埋めたと考える。以上から、エキシマレーザ照射照射プロセスに酸素プラ ズマを融合したプロセスは、金属酸化物中の酸素欠損量を減らすことに有効であることを明ら かにした。

(2)エキシマレーザ照射プロセスへの窒素プラズマ融合効果

出発原料としてMOD(有機金

属前駆体)膜を用いた場合: ガラス基板上に Ti および Ta の

有機金属膜を窒素プラズマ中でレ ーザ照射した結果、それぞれルチ ル Ti0₂相と Ta₂0₅の酸化物が得ら れた (図4) Tiのみ)。レーザ照 射下の薄膜表面の温度を、熱伝導 方程式を用いて、有限要素法によ り計算した結果、TiとTaともに、 最高到達温度は 1000 を超えて おり、窒化に必要な温度には到達 していることを確認した(図 5 Tiのみ)。窒素プラズマ中でも酸 化物へと結晶化したのは、プラズ マ発生装置チャンバー内に残留し た酸素に加えて、前駆体膜中に含 まれる酸素によって結晶化したも のと考えらえる。おそらく、300 で仮焼成後の有機前駆体膜中の金

属と酸素の結合が強いため、レーザ照射および窒素プラズマ中の窒素の活性種の効果だけでは、 金属と酸素の結合が切断されないことがわかった。しかし、XPSの測定結果より、窒素プラズマ 中でレーザ照射して作製した TiO2 膜中には、窒素をドープした TiO2 に見られる Ti-N および Ti-O-N の窒素種が確認された(図6)。このことから、TiN 等への窒化物は形成されないが、酸化物 に窒素はドープされていることを確認した。

出発原料として金属薄膜を用いた場合:

スパッタリング法により、ガラス基板上に成膜した Ti、Ta、Si の金属膜に窒素プラズマ中で レーザ照射した結果、最も結晶構造に変化が生じ、窒素の導入傾向が確認されたのは、Ti であ った。Ti 膜にレーザ照射すると、 Ti 相の 002 ピークより低角度側にピークが出現した(図7)。 レーザフルエンス 140 mJ/cm²、レーザ照射時間が 10 分の条件で、照射雰囲気を空気中と窒素プ

図 5 レーザ照射下の薄膜の温度シミュレーション レーザパルス(幅 20 ns)の中心を 40 ns に設定

図 6 窒素プラズマ中レーザ照射により作製 した TiO2 の N1s の XPS スペクトル

ラズマ中とで比較した結果、空気中でレーザ照射した場合は、 Ti 002 回折ピークよりも低角 度側には変化は見られないのに対して、窒素プラズマ中でレーザ照射すると、変化が見られた。 このことより、窒素プラズマ中でレーザ照射すると Ti の格子間(八面体サイト)に窒素が入 り込んでいると考えられる。また、より高いフルエンスおよび長い照射時間でレーザ照射(180 mJ/cm²で90分間)では、より低角度側にピークが出現した。このことから、金属膜に窒素プラ ズマ中でレーザ照射した場合は、有機金属膜と比較して、膜中に窒素が導入されることがわかっ た。これは、Ti と酸素の結合の有無、およびTi の価数が、窒素が導入されやすさに大きく影響 するためと考えられる。しかし、180 mJ/cm²で、さらに長時間のレーザ照射した場合(120分間) においても、回折パターンは大きくは変化しなかったことから、窒素の導入量には限界があるこ とがわかった。

ローザパルス (幅 20 ns)の中心を 40 ns に設定

レーザ照射下の Ti 膜の温度のシミュレーションの結果、、Ti の融点(1660)を超える温度ま で到達していることがわかった。XRD パターンと併せて考察すると、Ti の融点を大きく超える温 度領域に到達している場合に、窒素が導入される傾向があることがわかった。つまり、窒素の導 入のしやすさには、レーザ照射中の薄膜の温度と薄膜材料の融点に関係していると思われる。Ti 以外の金属膜の場合、Si では、その熱伝導率の大きさにより、同じフルエンスのレーザ照射下 でも、十分には温度が上昇しないことがわかった。また、Ta は、Ti と Si の中間的な温度上昇を するものの、Ta の融点は 3000 以上と高い。そのため、Ta と Si は、Ti と比べると窒素が導入 されにくいと考えられる。

以上より、窒素プラズマ中におけるレーザ照射によって金属膜に窒素を導入するには、薄膜の 温度および融点が重要な因子となっていることがわかった。今後は、反応ガス、前駆体の種類を 変更することで、さらに、低温で窒化されやすい条件を探索する必要がある。

5.主な発表論文等

〔雑誌論文〕 計3件(うち査読付論文 3件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名	4.巻
西川雅美、瀬川龍生、齊藤信雄、石橋隆幸、中島智彦、土屋哲男	139
2.論文標題	5 . 発行年
光電極高機能化に向けた光MOD法への酸素プラズマ融合効果	2019年
3.雑誌名	6 . 最初と最後の頁
電気学会論文誌C(電子・情報・システム部門誌)	197-202
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1541/ieejeiss.139.197	有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

1.著者名 Nishikawa Masami、Shiroishi Wataru、Honghao Hou、Suizu Hiroshi、Nagai Hideyuki、Saito Nobuo	4.巻 121
2.論文標題	5.発行年
Probability of two-step photoexcitation of electron from valence band to conduction band through doping level in TiO2	2017年
3.雑誌名	6.最初と最後の頁
The Journal of Physical Chemistry A	5991 ~ 5997
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.1021/acs.jpca.7b05214	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 Nakabayashi Yukihiro Nishikawa Masami Saito Nobuo Terashima Chiaki Fujishima Akira	4 .巻 121
2.論文標題	5.発行年
Significance of hydroxyl radical in photoinduced oxygen evolution in water on monoclinic	2017年
bismuth vanadate	
3.雑誌名	6.最初と最後の頁
The Journal of Physical Chemistry C	25624 ~ 25631
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1021/acs.jpcc.7b03641	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計3件(うち招待講演 0件/うち国際学会 0件) 1.発表者名

瀬川 龍生、西川 雅美、中島 智彦、土屋 哲男、齊藤 信雄、石橋 隆幸

2.発表標題

光MOD法への酸素プラズマ融合効果

3 . 学会等名

第78回応用物理学会秋季学術講演会

4 . 発表年 2017年

1.発表者名

瀬川龍生、西川雅美、齊藤信雄、中島智彦、土屋哲男、石橋隆幸

2.発表標題

光MOD法によるTiO2結晶化に及ぼす酸素プラズマの影響

3.学会等名 電気学会 フレキシブルセラミックスコーティング研究会

4 . 発表年 2017年

1.発表者名

西川雅美、瀬川龍生、石橋隆幸、齊藤信雄、中島智彦、土屋哲男

2 . 発表標題

光MOD法による光電極の高機能化

3 . 学会等名

電気学会 フレキシブルセラミックスコーティング研究会

4.発表年

2017年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6.研究組織

-

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究分担者	土屋 哲男 (Tsuchiya Tetsuo)	国立研究開発法人産業技術総合研究所・エレクトロニクス・ 製造領域・副研究センター長	
	(80357524)	(82626)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------