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Our previous studies suggest that the frequency of DNA methylation in human
liver is responsible for individual differences In CYP3A4 expression. The frequency of DNA
methylation varies in the cells derived from organs, even within the same subject. Biopsy of liver
tissues is necessary to analyze the frequency of DNA methylation, but is difficult to perform due to

its high invasiveness. In this study, a method for separating hepatocytes from peripheral blood by
immunomagnetic separation has been established. Next, we performed a clinical study on the
prediction of CYP3A4 activity based on DNA methylation analysis in healthy adults using our
established methods. The purpose of this study was to determine the relationship between the
frequency of DNA methylation in hepatocytes and the pharmacokinetics of midazolam, a known substrate
of CYP3A4. The results of the clinical study suggest that DNA methylation can be applied as a
marker for predicting individual CYP3A4 activity.
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the AUC pf midazolam (i.v.) relative to the AUC of 1-OH
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