研究成果報告書 科学研究費助成事業

令和 2 年 6月 8 日現在

機関番号: 34412
研究種目:基盤研究(C)(一般)
研究期間: 2017 ~ 2019
課題番号: 17K01700
研究課題名(和文)縮小モデルを用いた簡便なキャリブレーションによる3次元空間再構築方法の確立
研究課題名(央文)Establishment of a three-dimensional space reconstruction method by simple camera calibration using a reduced model
研究代表者
中井 聖 (Nakai, Akira)
大阪電気通信大学・医療福祉工学部・特任教授
研究者番号 · 8 0 6 3 5 2 9 3
交付決定額(研究期間全体):(直接経費) 3,600,000円

ションの結果から明らかにした.

研究成果の学術的意義や社会的意義 競技エリアに含まれる実空間座標値が既知である特徴点をコントロールポイントに用いたDLTによる3次元空間の 再構築方法において,これまで知られてこなかった分析空間全体の再現精度の特徴やカメラの設置位置による再 現精度の変化などを明らかにすることで,競技スポーツ場面や臨床現場で煩雑なキャリブレーション作業を行う ことなく,分析空間全体における偶発的な動作を簡便に精度よく3次元的に分析可能であることを明示した.本 研究で得られた知見は,2023年に技術的に実現による動作データの取得に家にするために知る。 収集・分析できるシステムにおける映像撮影による動作データの取得に寄与するものとなり得る.

研究成果の概要(英文): The present study indicated that accurate measurement of the 2D coordinates of analysis target points results in a calculation of the 3D coordinates with extremely high accuracy, even with the minimum six control points required for the mathematical solution of DLT (Direct Linear Transformation), in the method of reconstructing the 3D space by DLT that utilizes the feature points whose real space coordinate values included in the competition area are known as the control points from the results of the physical simulations whose systematic and random errors were minimized.

研究分野:スポーツバイオメカニクス

キーワード: 3次元動作分析 特徴点 二 座標 再現精度 誤差要因 _コントロールポイント キャリブレーション 物理シミュレーション 3次元

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。

様 式 C-19、F-19-1、Z-19(共通)

1.研究開始当初の背景

ヒトが行う動作を撮影して3次元的に分析する際には,DLT(Direct Linear Transformation) がよく用いられる.DLTでは,予め実空間での位置が分かっている計測点(コントロールポイン ト,以下 CP と略す)をカメラで撮影し,カメラ定数を内包した DLT パラメータを求めて3次元 空間を再構築する.通常,分析空間内に30から40個のCPを均等に設置してカメラで撮影し, 撮影映像上での座標(以下,2次元計測座標値)と実空間での座標(以下,実空間座標値)を対 応させるキャリブレーションを行う必要がある.競技スポーツ場面では,競技の実施場所や実施 時間の制約により,作業が煩雑なキャリブレーションを行えないこともある.また,競技エリア の一部を分析空間としてキャリブレーションを行ったとしても,分析空間外で対象とする動作 が起こる可能性もある.競技中に偶発的に生じるベストパフォーマンスや傷害が生じた際の動 作を分析対象とした場合,競技エリア全体を分析空間とすることが求められる.

球技種目では,競技を実施するコートやゴール,支柱などの大きさや高さ,それらの位置がル ールで明確に規定されており,競技エリア全体に実空間での座標が既知である特徴点が含まれ ている.これまでも実際の競技エリアを対象として,特徴点を CP として用いるキャリプレーシ ョンによって3次元空間を再構築することが試みられてきた.しかし,この方法は経験則に基づ いて運用されており,競技エリアの特徴点のように大きく偏って配置された CP が3次元座標値 の算出にどのような影響を与えるのか,CP として用いる特徴点の数や組み合わせ,撮影に使用 するカメラの設置位置が変わることによって,算出される3次元座標値がどのように変化する のかについてはよく知られていない.これらを検証する際に実際の競技エリアを対象とすると, カメラの設置位置などの制約があり,多様な条件を設定した比較が困難であるため,研究代表者 らは,競技エリアの縮小モデルを使用した物理シミュレーションによって実験的に DLT による3 次元座標値の再現精度を検討することを発案し,この方法を競技スポーツや臨床の現場で活用 可能な方法として確立することを目指した.

2.研究の目的

種々の球技種目の競技エリアを模した縮小モデルを使用して多様な計測条件を設定し,実空間での座標が既知である特徴点を CP として用いる簡便なキャリプレーション方法によって3次元空間を再構築する方法を確立し,競技エリア全体で精度良く3次元的に分析可能とすることを目的とした.

3.研究の方法

(1) 自作の縮小モデルを用いたカメラ設置条件間の比較

ネット型の球技種目であるバレーボールのコートを模した 10 分の 1 の縮小モデルを自作し, デジタルカメラ 2 台(GC-LJ20B,スポーツセンシング社製)を縮小モデルの中心に対する俯角お よび光軸の交差角を変えて設置し(合計 9 条件),特徴点 26 点(ライン交点 20 点,アンテナ上 の点 6 点)および 3 点の計測点を配したポールを分析空間内に等間隔に直立させて規定した基 準点 84 点をフル HD 撮影した.3 次元動作解析プログラム(FrameDIAS V, DKH 社製)を使用し, 各条件で得られた撮影映像から,特徴点および基準点の 2 次元計測座標値を手動取得した.特徴 点を CP として,特徴点の 2 次元計測座標値と実空間座標値から DLT パラメータを求め,DLT パ ラメータと基準点の 2 次元計測座標値から,DLT によって基準点の 3 次元推定座標値を算出し た.そして,各基準点の 3 次元推定座標値と実空間座標値との誤差を求め,カメラの設置条件間 で比較した.

(2) 2次元計測座標計測時のコンピュータビジョンの適用

(1)のカメラ2台の俯角30度,光軸の交差角120度の条件で,縮小モデルの特徴点および基準点を撮影した. 手動計測, 撮影映像に対して2値化,エッジ検出,一般化Hough変換¹⁾の各処理を行って得られる直線の交点を用いる方法, Zhangのカメラキャリブレーションの方法²⁾を用いて撮影映像のレンズ歪みの影響を除去した後,一般化Hough変換を用いる方法によって, 撮影映像上の特徴点の2次元計測座標値をそれぞれ取得した.数値解析ソフト(MATLAB R2016a, MatWorks 社製)を使用し,各方法において,特徴点をCPとしたDLTによって算出した CPの3次元推定座標値と実空間座標値との誤差,CPの2次元計測座標値の取得誤差を0と仮定した場合の推定値と実際の計測座標値との誤差(以下,計測誤差)を算出し,各方法間で比較した.

(3) 誤差要因を極力取り除いた物理シミュレーション

(1)および(2)で用いられた測定および分析方法を詳細に検討すると,使用された縮小モデル の作製,撮影に使用するカメラや計測点の設置位置の不確かさ,レンズ歪みなど撮影映像に対す る光学的な影響によって計測時に生じた系統誤差,その後の計測点の2次元計測座標値の手動 取得の不確かさによって生じた偶然誤差,CPとして使用する特徴点の設定がDLTで想定されて いるモデルから乖離していることで生じた理論誤差などが誤差が生じた要因と想定された.そ こで,計測時の系統誤差や分析時の偶然誤差を極力取り除いて計測するため,基盤および反射マ ーカーが付属した複数のピンで構成されるバレーボールコートを模した25分の1サイズの縮小 モデル(OptiTrack 社製,図1a)を作製し,反射マーカーの重心位置によって特徴点18点およ び基準点48点の各計測点を規定した.モーションキャプチャ専用カメラ2台(Prime13 OptiTrack 社製)を縮小モデルの中心点からの俯角が 30 度, 光軸の交差角が 90 度となるように設置し(図 1b), カメラ 2 台で特徴点および基準点として配置した各反射マーカーを解像度 1280×1024 ピ クセルで撮影した.モーションキャプチャ計測用ソフト(Motive Tracker 2.01, OptiTrack社 製)の API で取得されたレンズ歪み補正前の反射マーカーの重心位置の 2 次元座標値,計測用ソ フトで算出された 3 次元座標値を 10 フレーム分取得し,それぞれの平均を各特徴点および基準 点の 2 次元計測座標値および 3 次元基準座標値とした.

CP として使用する特徴点の選択による理論誤差を検討するため,数値解析ソフトを使用し, 分析空間の各方向で一番外側に位置する特徴点6点(点1,2,11,12,17 および18,図1c)をCP として,3次元基準座標値を実空間座標値として用い,DLTによって各基準点の3次元推定座標 値を算出した.各基準点の3次元推定座標と対応する実空間座標値との差分を求め,基準点全体 として座標ごとに二乗平均平方根誤差(RMSE)を求めた.続いて,先述の6点にCPを2点ずつ 追加して,8点(6通り),10点(15通り),12点(20通り),14点(15通り),16点(6通り), 18点(1通り)の合計64通りのCPの組み合わせで,同様の手順で基準点全体での座標ごとの RMSEを算出し,各組み合せ条件間で比較した.

図1.(a)基盤と反射マーカーから成る縮小モデル(破線 部分の反射マーカーが基準点,その他がCPに用いた特徴 点を示す),(b)縮小モデルおよびカメラの設置位置,(c) 縮小モデル上の特徴点および基準点の位置

- 4.研究成果
- (1) カメラの設置位置の3次元座標値算出への影響

カメラの俯角および光軸の交差角が異なる各条件における基準点全体での 3 次元推定座標値 の誤差は,X座標が0.83から1.33mm(基準長の0.09から0.15%),Y座標が0.69から1.91mm (0.04から0.11%),Z座標が0.74から1.74mm(0.25から0.58%)であり(表1),実際のバレ ーボールコートを分析対象とした場合³⁾と同程度の誤差であった.全ての条件において,分析 空間全体にわたって,撮影映像を3次元的に解析する際の許容範囲内の誤差で3次元座標値が 算出された.しかし,算出された3次元座標値は分析空間内で一様の誤差ではなく,概して外側 に位置する基準点ほど誤差が大きくなる傾向,鉛直位置が上方ほど中央部で誤差が小さく,外側 で誤差が大きくなる傾向が見られ,分析対象点とCPとの距離が3次元座標の再現精度に影響を 及ぼすと考えられた.加えて,算出された3次元座標の誤差は,カメラの設置位置の変化によっ て基準点全体で一様に変化するのではなく,基準点ごとあるいは座標ごとに異なった変化を示 した.この変化は,カメラの俯角あるいは光軸の交差角の変化に伴う各座標軸方向の空間分解能 の変動の影響に起因すると考えられた.

表1.カメラ2台の俯角および光軸の交差角を変化させた場合の基準点全体での誤差

	ct. IA	光軸の交差角								
俯角	坐悰	60) °		90 °		120 °			
	÷μ	m (SD)	%	最大	m (SD)	%	最大	m (SD)	%	最大
	Х	1.17 (0.79)	0.13	3.70	1.09 (0.91)	0.12	4.35	1.09 (0.81)	0.12	4.38
10 °	Y	1.05 (0.73)	0.06	2.96	0.88 (0.79)	0.05	3.36	1.91 (1.55)	0.11	6.35
	Z	1.74 (1.05)	0.58	4.49	0.99 (0.81)	0.33	3.43	0.89 (0.64)	0.30	2.80
	Х	1.24 (1.03)	0.14	5.25	1.00 (0.71)	0.11	3.57	1.15 (0.84)	0.13	3.79
20 °	Y	1.53 (1.18)	0.09	5.36	1.54 (1.28)	0.09	5.70	1.26 (1.13)	0.07	4.64
	Ζ	0.76 (0.57)	0.25	2.84	0.78 (0.60)	0.26	2.50	0.74 (0.52)	0.25	2.24
30 °	Х	1.09 (0.71)	0.12	3.06	1.33 (0.90)	0.15	3.76	0.83 (0.84)	0.09	3.92
	Y	1.35 (1.00)	0.07	4.18	1.28 (0.90)	0.07	4.19	0.69 (0.56)	0.04	2.27
	Ζ	1.10 (0.79)	0.37	3.83	1.08 (0.76)	0.36	2.94	0.98 (0.73)	0.33	2.77

mは平均, SDは標準偏差,最大は誤差の最大値.単位はmm.%は平均誤差の基準長に対する割合を示す.

(2) DLT による 3 次元座標値算出に対するコンピュータビジョン適用の効果

求められた CPの3次元推定座標のX座標,Y座標およびZ座標の平均誤差はそれぞれ,手動 取得では 0.77 mm (基準長の 0.09%), 1.05 mm (0.06%), 0.63 mm (0.21%), 一般化 Hough 変換で は0.50 mm (0.06%), 0.73 mm (0.04%), 0.43 mm (0.14%), レンズ歪みを除去した一般化 Hough 変換では 0.58 mm (0.06%), 0.75 mm (0.04%), 0.39 mm (0.13%) であった (図 2). 手動取得の 場合と比べ,一般化 Hough 変換ではそれぞれ 35.5%,30.8%,32.2%,レンズ歪みを除去した一般 化 Hough 変換ではそれぞれ 24.0% , 28.9% , 37.8%の改善が見られ , CP の 2 次元計測座標値の取得 に一般化 Hough 変換を適用することで, CP の 3 次元座標の再現精度が大きく改善した.一方, 撮影映像のレンズ歪みの補正を追加して一般化 Hough 変換を適用しても,3次元座標の再現精度 は一般化 Hough 変換のみを適用した場合から改善が見られなかった.また,CP の 2 次元計測座 標の X 座標および Y 座標の平均取得誤差は , 手動取得では 0.7 ピクセル , 0.5 ピクセル , 一般化 Hough 変換では 0.5 ピクセル, 0.4 ピクセル, レンズ歪みを除去した一般化 Hough 変換では 0.6 ピクセル,0.4 ピクセルであった(表2). 手動取得に対して,一般化 Hough 変換ではそれぞれ 26.6%, 27.7%, レンズ歪みの除去と一般化 Hough 変換ではそれぞれ 24.6%, 26.2%改善しており, ·般化 Hough 変換の適用が CP の 2 次元計測座標値の取得誤差の改善に貢献した.DLT では,計 測点の 2 次元計測座標値の取得精度が 3 次元座標の再現精度に大きく影響するとされており 4) , 競技エリアの特徴点を CP とした DLT 法によって 3 次元座標値を推算する場合,レンズ歪みの補 正よりも一般化 Hough 変換による CP の 2 次元計測座標値の取得精度の向上が CP の 3 次元座標 の再現精度の改善に貢献することを確認した.

図 2.3 種類の方法で算出された CP の 3 次元推 定座標値の平均誤差 表 2.3 種類の方法で得られた CP の 2 次元座標値の計 測誤差

士 注	カメ	ミラ1	カメラ2		
万法	X座標	Y座標	X座標	Y座標	
手動取得	0.7(0.5)	0.5(0.3)	0.8(0.5)	0.5(0.4)	
一般化Hough変換	0.5(0.4)	0.3(0.3)	0.6(0.4)	0.4(0.4)	
歪み補正+一般化Hough変換	0.5(0.5)	0.3(0.3)	0.6(0.3)	0.5(0.4)	
データは平均(標準偏差),単位は	はピクセル .				

(3) 競技エリアの特徴点を CP に用いた DLT による 3 次元座標値算出の特徴 基準点全体での RMSE は,X 座標が 0.004 から 0.020 mm, Y 座標

が 0.015 から 0.077 mm, Z 座標が 0.023 から 0.060 mm, 最大でも 基準長の 0.053%の誤差であり(表 3),手動計測を用いた結果(本 報告の(1))と比較して,基準点全体での誤差は 10 分の 1 程度と 非常に僅少であった.CP の 2 次元計測座標値の計測誤差もまた 0.077 ピクセルと非常に僅少であった.よって,競技エリアの特徴 点を CP に用いた DLT によって分析空間を 3 次元的に再構築する 場合,特徴点および分析対象点の 2 次元計測座標値を精度良く取 得することで,3 次元基準座標に非常に近似した 3 次元推定座標 が算出されること,競技エリアの特徴点のように CP が偏向した配 置であっても,3 次元座標の全体的な再現精度には影響がないこ とが分かった.そして,計測点の 2 次元計測座標値の僅かな計測 誤差や,真値を知り得ない実空間座標に対して最確値が用いられ

表 3. 各 CP 数の基準点全体での RMSE の平均

00##	RM	RMSEの平均 (mm)			
UPEX	Х	Y	Z		
6	0.007	0.019	0.030		
8	0.008	0.028	0.033		
10	0.012	0.043	0.041		
12	0.012	0.038	0.037		
14	0.013	0.042	0.039		
16	0.015	0.045	0.040		
18	0.016	0.048	0.041		
最大	0.020	0.077	0.060		
最小	0.004	0.015	0.023		

たことによる影響,3次元座標の算出時に生じた丸め誤差などの累積が,算出された3次元推定 座標値に非常に僅少な誤差が生じた要因であると推察された.

基準点全体での RMSE の平均は,各座標とも CP が最少の6点の場合でも非常に僅少であった(図3).CP 数の増加にしたがって RMSE の平均は有意に増加する傾向であったが,これは先述した累積誤差の増加が一因であると考えられた.CP 数が同数であっても,CP の組み合わせによっ

図 3 . 各 CP 数での (a) X 座標 , (b) Y 座標およひ(c) Z 座標の RMSE とその平均 . は各 CP 数の平均 は RMSE が最も低値であった組み合わせを示す . て基準点の RMSE は異なった.各 CP 数において基準点の RMSE が最も低値であった組み合わせを 比較すると, CP 数が 6 点から 14 点と増加しても,基準点の RMSE は各座標とも同程度であった. これらのことから,競技エリア内の特徴点を CP に用いた 3 次元座標空間の再構築方法では,分 析空間の各方向で一番外側に位置する特徴点 6 点を CP として選択し,それら CP の 2 次元計測 座標値を精度良く取得することで, CP が DLT の数学的な解法上必要な最少数である 6 点の場合 でも,非常に高い精度で 3 次元座標値が算出されることが分かった.

(4) まとめと今後の展望

本研究では,自作した縮小モデル,従来のカメラおよび動作分析システムを用いた物理シミュ レーションによって得られた結果から,競技エリアの特徴点を CP に用いた DLT による3次元空 間の再構築方法は,分析空間内の3次元座標を十分な再現精度で算出可能であるが,分析空間内 で再現精度が一様でない,カメラの設置位置によって再現精度が変化するなどの特徴を有する ことが明らかとなった.これらの特徴を考慮して利用すれば,競技スポーツ場面や臨床現場で煩 雑なキャリブレーション作業を行うことなく,分析空間全体における偶発的な動作を簡便に精 度よく3次元的に分析可能であることが分かった.また,その際には,一般化 Hough 変換のよう なコンピュータビジョンを適用した各分析対象点の2次元計測座標値の取得が,3次元座標の再 現精度の改善に有効であると考えられた.加えて,分析空間内の各分析対象点を高精度で規定し た縮小モデルおよびモーションキャプチャカメラを用いた各分析対象点の2次元座標の光学的 計測によって,系統誤差および偶然誤差を極力取り除いた物理シミュレーションの結果から,本 研究の方法は,分析対象点の2次元計測座標が精度良く得られれば,DLTの数学的な解法上必要 な最少数である6点のCPであっても,非常に高精度で3次元座標が算出されることが明らかと なり,各分析対象点の2次元計測座標の取得精度向上が今後注力すべき課題となることが示唆 された.

当初研究計画では, CP の数が少ない場合やその配置が偏っている場合には3次元座標の再現 精度が不安定となりやすいという先行研究の結論⁵⁾を基に,撮影に使用するカメラの台数や設 置位置から,特徴点の最適な選択数や組み合わせを導き,予めどの程度の精度で3次元座標値が 再現されるのかを推測できるデータベースを構築する予定であった.しかし,誤差要因を極力取 り除いた物理シミュレーションから, CP が DLT の理論上の最少数である6点でも高精度で3次 元座標値が得られることが分かり,理論どおりの結果となることが検証されたため,データベー スの作成には至らなかった.また,種々の球技種目の競技エリアを模した縮小モデルを作成して 物理シミュレーションを実施する予定であったが,縮小モデルの製作に想定以上の費用を要し たため,ネット型球技のバレーボールに注力して研究を進行しており,ゴール型やベースボール 型球技などにも対象を拡げて今後検証していくことが求められよう.

< 引用文献 >

1) Duda, R. O., Hart, P. E., Use of the Hough transformation to detect lines and curves in pictures, Communications of the ACM, 15(1), 1972

2) Zhang, Z., A flexible new technique for camera calibration, IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(11), 2000, 1330-1334

3) 中井聖,村本名史,栗田泰成,高根信吾ほか,バレーボールコート内の既知点を用いた3次 元座標空間の再構築方法の精度とその特徴,バレーボール研究,19(1),2017,34-42

4) Chen, L., Armstrong, C. W., Raftopoulos, D. D., An Investigation on the accuracy of three-dimensional space reconstruction using the direct linear transformation technique, Journal of Biomechanics, 27(4), 1994, 493-500

5) 小野徹,バンドル法 第6回 精密工業計測におけるバンドル法とカメラキャリブレーション, 写真測量とリモートセンシング,51(6),2012,387-396

5.主な発表論文等

〔雑誌論文〕 計3件(うち査読付論文 3件/うち国際共著 0件/うちオープンアクセス 3件)

1.著者名 中井聖	4.巻 5(1)
2.論文標題	5 . 発行年
ビデオカメラでの3次元動作計測における問題点と測定精度向上の取り組み	2018年
3.雜誌名	6 . 最初と最後の頁
臨床歩行分析研究会誌	1-6
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
なし	有
オープンアクセス オープンアクセスとしている(また、その予定である)	国際共著

1.著者名	4.巻
中井聖,新井彩,村木有也,市谷浩一郎	53
2.論文標題	5 . 発行年
KinectTM for Windowsを用いた垂直跳の跳躍高の即時的計測システムの特徴	2018年
3.雑誌名	6.最初と最後の頁
大阪電気通信大学研究論集(自然科学編)	33-40
掲載論文のDOI(デジタルオブジェクト識別子) なし	査読の有無 有
オープンアクセスオープンアクセスとしている(また、その予定である)	国際共著

1 . 著者名	4.巻
中井聖,村本名史,栗田泰成,高根信吾,瀧澤寛路,塚本博之,河合学	19(1)
2.論文標題	5 . 発行年
バレーボールコート内の既知点を用いた3次元座標空間の再構築方法の精度とその特徴	2017年
3.雑誌名	6 . 最初と最後の頁
バレーボール研究	34-42
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
なし	有
オープンアクセス オープンアクセスとしている(また、その予定である)	国際共著

〔学会発表〕 計6件(うち招待講演 1件/うち国際学会 0件)
 1.発表者名

中井聖,金承革,村木有也,市谷浩一郎

2.発表標題

コントロールポイントの数や組み合わせが3次元座標の再現精度に与える影響

3 . 学会等名

日本体育学会第70回大会

4 . 発表年

2019年

1 . 発表者名 中井聖,小笠原一生,金承革

2.発表標題 バレーボールコートの特徴点を用いたキャリブレーション方法における3次元座標の誤差要因の検討

3.学会等名 第39回バイオメカニズム学術講演会

4.発表年 2018年

1.発表者名
 中井聖,小笠原一生,金承革,市谷浩一郎,村木有也

2.発表標題

競技エリア内の特徴点を用いた3次元座標空間再構築方法に対するコンピュータビジョン適用の効果

3 . 学会等名

第25回日本バイオメカニクス学会大会

4.発表年 2018年

1.発表者名 中井聖

2.発表標題

カメラの光軸の交差角を変化させた際の3次元座標空間再構築の精度の変化:バレーボールコートの縮小モデル上の特徴点を用いた簡便な キャリブレーションによる場合

3 . 学会等名

日本体育学会第68回大会

4 . 発表年 2017年

1.発表者名

中井聖,金承革,小笠原一生

2.発表標題

カメラの俯角を変化させた際の3次元座標空間再構築精度の変化:バレーボールコートの縮小モデル上の特徴点を用いたキャリプレーショ ン方法による場合

3 . 学会等名

第38回バイオメカニズム学術講演会

4 . 発表年 2017年

1.発表者名

中井聖

2.発表標題 ビデオカメラでの3次元計測における問題点と測定精度向上の取り組み

3 . 学会等名

第39回臨床步行分析研究会定例会(招待講演)

4 . 発表年

2017年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究協力者	金 承革 (Kim Hyek Sung)		
研究協力者	小笠原 一生 (Ogasawara Issei)		