©
2017 2019

Cut locus and variational problems with constaints on Finsler manifolds

Cut locus and variational problems with constaints on Finsler manifolds

SABAU, VASILE SORIN

1,800,000

(cut locus)

In this research | have studied the cut locus and variational problems on

Finsler manifolds. Both of them are important problems in Differential Geometry, one of the most old
and fundamental fields of modern mathematics.

Finsler manifolds are spaces where the geometry and Physics of the space depend on the direction.
Therefore, distances between points, shortest paths (called geodesics) and many other geometrical
properties depend on the direction. In the Euclidean space, distances between points are the same in
one direction as well as in the oposite direction, however just imagine a strong wind blowing. If
traveling with a constant speed engine, clearly we can regard the time needed to reach point B from
a point A as the distance between the points A and B. The everzday life experience teaches that the
time needed to travel from A to B is not the same as going back under a strong wind. Finsler
geometry is a realistic model of the real World and this make it very important.
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1 Initial background of the research

Finsler Geometry is just the Riemannian Geometry without the
quadratic restriction (S. S. Chern). Indeed, what we call today a Finsler
norm was actually introduced by B. Riemann in his famous Habilitation Dis-
sertation from 1854, namely a metric function ds = F(z!, ..., 2" dzt, ... da"™)
that depends on position and direction.

Any geodesic v emanating from a point p in a compact Finsler manifold
loses the global minimising property at a point ¢ on 7. Such a point ¢ is
called a cut point of p along . The cut locus of a point p is the set of all cut
points along geodesics emanating from p. The cut locus often appears as an
obstacle when we try to prove some global theorems in differential geometry.

The cut locus is also a vital notion in analysis, where it appears as a
singular points set. The structure of the cut locus plays an important role
in optimal control problems in space and quantum dynamics allowing to
obtain global optimal results in orbital transfer and for Lindblad equations
in quantum control.

2 The purpose of the research

1. The present research proposal has the main purpose to study the ge-
ometry and topology of Finsler manifolds by using the properties of
distance function and the cut locus.

2. The present research proposal uses the theory of geodesics on Rieman-
nian and Finsler manifolds. This theory is intimately related to the
Calculus of Variations.

3 Methods

1. We will use the theory of geodesics and in special the Lipschitz conti-
nuity of the distance function, the structure theorems of the cut locus
and the analytical properties of Busemann functions on complete, non-
compact Riemannian and Finsler manifolds for obtaining new relations
of Finsler metrics with the topology of the manifold.

2. We will use the variational problem for integral manifolds (1 dimen-
sional and higher dimensional) of exterior differential systems. This
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method will allow to study new geometrical problems not only in Finsler,
but also in Riemannian geometry.

Results

The geometry and topology of Finsler manifolds
by using the properties of distance function and
the cut locus

. The geodesics behavior and cut locus of some Finsler mani-

folds ([1]).

We studied the geometry of geodesics of a Kropina space with the
fundamental metric obtained by the Zermelo’s navigation problem with
navigation data given by a unit Killing vector field W on a Riemannian
manifold (M, h), called a strong Kropina space.

Theorem 4.1 (a) Any compact connected manifold with boundary
admits a globally defined Kropina metric.

(b) Any compact connected boundaryless manifold M admits a globally
defined Kropina metric if and only if x(M) = 0.

(c) Any compact connected odd dimensional manifold (regardless it
has boundary or not) admits a globally defined Kropina metric.

(d) Any connected non-compact manifold admits a globally defined
Kropina metric.

(e) If M admits a globally defined Kropina metric, then the product
manifold M x N also admits a globally defined Kropina metric.

(f) Every Lie group G admits n = dim G distinct globally defined
Kropina metrics, one of each corresponding to one vector field in
a parallelization of G.

(9) If M and N are parallelizable, then M x N admits m x n distinct
globally defined Kropina metrics, where m and n are the dimen-
sions of M and N, respectively.

Theorem 4.2 Let M be a 2-dimensional manifold admitting a strong
Kropina metric induced by the navigation data (h,W). Then

2



(i) The Riemannian surface (M,h) is flat, i.e. M is isometric to
one of the manifolds: Euclidean plane, straight cylinder (in the
non-compact case), or flat torus, Mdobius band, Klein bottle (in
the compact case).

(ii) In the cases M isometric to Mébius band, Klein bottle, W is quasi-
reqular.

A Hopf-Rinow Theorem for strong Kropina spaces can be now formu-
lated. We also have performed a detailed research of the conjugate
locus, cut locus of a such Finsler metric illustrated several with exam-
ples.

. The cut locus of a Randers rotational 2-sphere of revolution
([2]).

Formally, if we consider the background landscape to be a Riemannian
manifold (M, h), endowed with a vector field W on M, ||W||, < 1, then
the shortest time travel paths are precisely the geodesics of a Finsler
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metric of Randers type F(z,y) = a(z,y) + f(z,y) = 3 3
uniquely induced by the navigation data (h, W). Here W = W*. % is
the velocity vector field of the wind, A = 1 — [|W]|2, Wy = h(W,y).

Theorem 4.3 Let (M, F) be a Randers rotational 2-sphere of revolu-
tion with navigation data (h, W), where W = pu- & is the wind blowing
along parallels, u < {m 1 € [0,2al}, with a pair of poles p,q,
dn(p,q) = 2a such that M is symmetric with respect to {r = a}, and

the flag curvature K is monotone along a meridian. Then the F-cut
locus CE of a point x € M \ {p, q} with {6(x) =0} is

(a) The subarc of the opposite half bending meridian,
CIF = @(d(IaT(t))aT@))? t e [C, QCL—C]7

where @ is the flow of the wind, when IC is monotone non-increasing.

(b) The following subarc of the antipodal parallel {r = 2a — r(x)} to
T

Co =17 (2a —r(2)) N0 {H(m) + d(x),2m — (H(m) — ¥(2))}.

where Y (x) = p-dp(x, do), o is the h-first conjugate point of x with
respect to h, m := m(r(x)), when K is monotone non-decreasing.

3



4.2

(c) A single point on the antipodal parallel CE = (2a—r(x), m(1+uR)),
where R is radius of sphere, when IKC = % s constant.

(d) If the cut locus of x € M \ {p,q} is a single point, then K is
constant.

More generally, if the Gaussian curvature of h, or of F', is not monotone,
we gave a characterization of the cut locus in this case also.

Study of variational problems for integral mani-
folds of EDS

. Variational problem for time-depending Lagrangians ([3])

An an application of our research on Variational Problems, we were
interested here to find a Finsler type geometrization of quantum me-
chanics for charged particle under the influence of an exterior electro-
magnetic field.

Theorem 4.4 The fundamental function F = %2, associated to the
Lagrangian of the hydrodynamic representation of the quantum me-
chanics, in the presence of external electromagnetic fields, is a globally
defined Kropina metric on the extended configurations space M, where
a? = a;yy'y’ is the associated Riemannian metric to the hydrodynamic

Lagrangian of the quantum mechanics, and 3 = y°.
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