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The methods developed in this research project makes new classes of proteins more easily accessible
to detailed NMR studies. Previously, NMR resonance assignments for these proteins could only be
determined by time-consuming experimental methods such as extensive mutagenesis.

Proteins that are large, membrane-bound, or studied in living cells by
in-cell NMR can in general not be assigned by the conventional solution NMR method that relies on
uniform 13C/15N-labeling because the resonance lines become too broad and overlapping. Interpretable

spectra can be restored by sparse labeling of methyl groups although resonance assignments remain
difficult to obtain. Here we developed the MethylFLYA method that can assign large, methyl-labeled
proteins using NOESY spectra in conjunction with a known 3D structure. MethylFLYA finds assignments
by optimizing a mapping between expected peaks based on the protein sequence, and the measured peaks

identified by peak picking. The new approach has been applied to large proteins up to 468 kDa size
and to proteins in living cells.
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As structural biology trends towards larger and more complex biomolecular targets, a
detailed understanding of their interactions and underlying structures and dynamics is
required. The development of methyl-TROSY has enabled NMR spectroscopy to provide
atomic-resolution insight into the mechanisms of large molecular assemblies in solution.
However, the applicability of methyl-TROSY has been hindered by the laborious and
time-consuming resonance assignment process, typically performed with the help of
domain fragmentation, site-directed mutagenesis, and analysis of NOE data in the
context of a crystal structure, or combinations thereof. In response to such difficulties,
automated methyl resonance assignment strategies have been proposed but practical
implementations remained unsatisfactory.

In recent years we have developed a general automated assignment, FLYA, that
determines resonance assignments by optimizing a mapping between the expected peaks,
which one anticipates to see based on the protein sequence, and the measured peaks that
have been identified by peak picking in virtually any type of NMR spectrum. In
particular, we could show that FLYA can assign proteins using as input exclusively
NOESY spectra. FLYA thus provided a promising platform for the present project.

2. WHEDHM

We proposed to develop a robust automated method based on our existing FLYA
automated assignment algorithm for the assignment of large methyl-labeled proteins
that relies on NOESY data and a known 3D structure, and to apply the method to large
proteins, protein complexes, and proteins in living cells (Tanaka et al., 2019; Ikeya et al.,
2019). The aim of this research was to enable and speed up NMR studies of such proteins
in order to better understand their structural changes, interactions, dynamics, and
ultimately their function in basic and pharmaceutical research.

3. WHEDT ik

The FLYA algorithm determines resonance assignments by establishing an optimal
mapping between expected peaks that are derived from knowledge of the protein
sequence, experimental types, and, if available, 3D structure, and the observed peaks
that are identified in the corresponding measured spectra. This mapping, and hence the
assignments, are optimized by an evolutionary algorithm coupled to a local optimization
routine. MethylFLYA adopts the general FLYA algorithm for the assignment of methyl
groups based on methyl-methyl NOEs and a known 3D structure (PritiSanac et al., 2020).
MethylFLYA uses the atom positions from the input protein structure and magnetization
transfer pathways defined for each NMR experiment type to compute a network of
expected peaks. The mapping of expected peaks to measured ones starts from an initial
population of random assignment solutions, which are optimized through successive
generations by an evolutionary algorithm. To select the best individuals for
recombination, a scoring function is employed, which takes into account the alignment
of peaks assigned to the
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To establish the confidence of the assignment of an individual atom,
Methyl FLYA analyzes the chemical shift values obtained in a series of independent runs
of the optimization algorithm. MethylFLYA thus defines a consensus chemical shift value
for each atom. A consensus assignment is classified as reliable if more than 80% of the
individual runs yielded (within a tolerance) the same chemical shift value. In
MethylFLYA, consolidation into consensus assignments is enhanced over the original
FLYA algorithm by running three series of 100 individual runs with three slightly
different distance cutoffs for the generation of expected NOESY peaks.

MethylFLYA was applied to five proteins of varying molecular mass and shape for which
NOESY data from specifically methyl-labeled samples, assignments, and 3D structures
were available: the N-terminal domain of . coli Enzyme I (EIN; molecular mass 28 kDa),
a dimer of regulatory chains of aspartate transcarbamoylase from E. coli (ATCase; 34
kDa), maltose binding protein (MBP; 41 kDa), malate synthase G (MSG:; 81 kDa),!8 and
the “half-proteasome” 20S core particle, a 14-mer (ara7; 358 kDa).

MethylFLYA assigned between 63% (ATCase) and 84% (aro7) of the methyl
resonances for which reference assignments are available, with no assignment errors for
EIN, MSG, and o707 (PritiSanac et al., 2019). Two incorrect methyl assignments were
found for MBP, and four for ATCase. In the 3D structures, all incorrectly assigned
methyls were located in proximity to their correct assignment positions. Such spatially
localized assignment errors are expected to have minor impact on studies that do not
require very high-resolution information, for instance, when identifying an interaction
interface.

A performance comparison of MethylFLYA with the other available NOE-based
automatic methyl assignment software packages is shown in the Figure below
(Pritisanac et al., 2020).
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The same input data for five different proteins were used in all programs. On average,
MethylFLYA yielded correct assignments for significantly more methyl groups than
alternative algorithms, has an average error rate of 1%, modest runtimes of 0.4-1.2 h,
and can handle arbitrary isotope labeling patterns and data from other types of NMR
spectra.

In addition, we have applied a similar automated assignment method based on
FLYA in an integrated structure determination approach that simultaneously uses NMR
and EM data for the structure determination of the 468 kDa large dodecameric
aminopeptidase TET2 with high accuracy, significantly exceeding current standards of
NMR structure determination (Gauto et al., 2019). Automated assignments were also
obtained for the 42 kDa maltose binding protein MBP (Stanek et al., 2020) and for the
helical integral membrane protein bacteriorhodopsin (Kooijman et al., 2020).
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