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We have developed physical models that can be used to understand the way in which interactions with
the environment determine the behavior of crawling and dividing cells. Our models help explain how
external stretching can reorient cells, and how local interactions can give rise to ordered motion.

i i In purpose of this study is to clarify how crawling cells resBond to signals
from their environment. First, a detailed cell model, which accounts for the deformable shape, the

propulsion and the adhesions to the substrate, was used to study the cell-specific reorientation on
cyclically-stretched substrates. We found that any asymmetry during extension/compression can be
used to align the cells parallel/perpendicular to the stretching. As observed experimentally, this
response depends strongly on the frequency. Second, a minimal physical model was used to study the
collective motion of crawling and dividing cells. We found that local mechanical interactions, which
couple to the shape, motility, and division, can explain the large-scale collective motion seen
experimentally.
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1. WFFERRAE S IO 5t

The dynamics of Eukaryotic cells (e.g., animal, plant and fungal cells), is crucial to
understand basic biology and develop treatment for many diseases. Here, particular
focus is given to substrate—based crawling, due to its biological significance, and
the ease with which experiments can be performed. These motile cells migrate using a
basic three—step crawling procedure that has been well known for almost 50 years ([1]
Abercrombie M., Proc. R. Soc. Lond. B 207, 129, 1980). First, actin filaments polymerize
at the front of the cell, pushing against the cell membrane and creating forward
protrusions. Second, focal adhesions are formed at the front, creating anchor points
for the actin filament network to transfer the forces to the substrate. Third, myosin
motors contract the actin—network, releasing the adhesions at the back and moving the
cell forward. While the basics of single—cell motion are understood, the way in which
cells react to signals from their environment, and thus regulate their biological
functions, is still largely unknown. At the single—cell level, these signals can affect
everything from the shape, motion, and cell division, as well as the differentiation
of stem cells. This last example has many applications, as demonstrated by recent
experiments, in which the pore sizes on honeycomb lattice scaffolds are tuned to drive
stem—cell differentiation into bone or muscle cells ([2] Kawano et al., Biomater. Sci.
2, 52,2014). At the tissue level, the response to external signals will affect the
collective motion present in embryo development, wound healing, and cancer invasion.

Understanding such complex dynamical phenomena is an incredibly challenging task, given
that they lie at the intersection of physics, chemistry, and biology. However, it has
been recognized that many aspects of cell motion can be understood from a purely
physical/mechanical standpoint, allowing us to sidestep the bio—chemical pathways at
the origin of a specific cellular response. First, we have an intrinsic coupling
between the cell shape and its motility, owing to the fact that the actin—network that
provides structural support is also heavily involved in the propulsion. Second, the
focal adhesions provide a mechanical link between the actin network and the substrate

allowing for the transfer of forces and the ability to sense the mechanical properties
of its environment and respond accordingly (i.e, mechanosensitivity). Furthermore

when considering multi—cellular environments, the cell-cell interactions, can also be
understood in terms of cell-cell contacts (i.e., mechanically). Thus, there has been
dramatic progress in developing cell-level phenomenological models, which account for
the cell-shape, propulsion, and substrate adhesions, among others, from a purely
physical point of view ([3]Ziebert and Aranson, Npj Comput. Mater.2, 1609, 2016). These
models have started to provide clues for understanding how cells move, and how they
interact with and respond to their environment, but many questions remain unanswered

A salient example of such an open question is the dynamical response of crawling cells
on cyclically stretched substrates, which show a frequency dependent cell-specific
reorientation ([4] Okimura et al., Cell Adh.Migr.106, 16 2014). Here a distinction is
made between slow-crawling (e.g., fibroblasts) and fast-crawling (e.g., Dictyostelium)
cells. The former typically possess stress fibers (thick actin bundles), while the
later typically do not. Under cyclic stretching slow—crawling cells will usually
reorient with their stress fibers perpendicular to the direction of stretching. In the
case of fast—crawling cells, Okimura et al. reported a preference of the cells to crawl
perpendicular to the stretching. Crucially, no ordering of the actin—network was
observed. This cell-specific response is not clearly understood. While several theories
have been developed to explain such behaviour, they tend to focuse on slow-crawling
cells, where motility and reorientation can be decoupled. For fast—crawling cells,
this decoupling is not suitable, and it is necessary to consider how the sub—cellular
elements (e.g., actin network, focal adhesion) respond to the stretching as a whole

2. WO EMN

The purpose of this study is to clarify how crawling and dividing cells respond to



signals from their environment. In particular, we want to understand how the internal
cellular processes and the cell dynamics can couple to external signals to give rise
to the large—scale behaviours observed experimentally. This includes the reorientation
of cells on cyclically stretched substrates, as well as the collective cell migration
responsible for wound closure and tissue development. Fort this, we focus on two main
themes: developing cell-specific models of crawling/dividing cells and studying the
dynamics of cells in various biologically relevant environments

3. WHEDTE

The purpose of this study is to elucidate how cells respond to signals from their
environment, in particular mechanical signals, in order to pursue their biological
functions. For this, we consider the dynamics of cells in a variety of distinct
biologically motivated situations: (A) cells crawling over cyclically stretched
substrates, (B) through complex environments, and (C) proliferating (crawling and
dividing) over planar substrates. To accomplish this, we have developed two minimal
physical models capable of describing the mechano—sensitive response of (A-C), and
proceeded to implement them numerically. For (A-B) we have used (1) a detailed cell-
level model, which incorporates the relevant sub—cellular processes (variable cell
shape, actin propulsion, adhesions, etc.), whereas for (C) we have used (2) a minimal
physical model that coarse—grains the intra—cellular degrees of freedom to allow for
large—scale simulations. Finally, in an effort to bridge between these two levels of
description, we have investigated the use of (3) Machine Learning techniques to learn
“macroscopic” constitutive equations from more detailed “microscopic” models

(1) Detailed cell-level model of crawling cells

We have further developed a cell-level phase field model of fast-crawling cells,
originally introduced to describe crawling over rigid substrates[3], in order to study
the crawling dynamics over cyclically stretched substrates, as well as crawling through
complex environments (e.g., through micro-pillar assays). The model accounts for the
dynamics of the cell membrane, the actomyosin based propulsion, the membrane—tension
feedback on the polymerization, the bending rigidity, and the focal adhesion dynamics
with the (deformable) substrate. Thus, even though we are using a phenomenological
model, it is possible to incorporate the basic physical mechanisms responsible for the
mechanosensitive response of crawling cells. In particular, for crawling over
cyclically stretched substrates, we have focused on the stability of the focal adhesions
to explain the reorientation behaviour. This is accomplished by introducing an adhesion
detachment rate that depends on the rate of deformation (i.e., how fast the cell is
being compressed and/or extended), and is motivated by theoretical predictions for the
instability of adhesion bonds at high frequencies ([5]Zhong et al., Cell. Mol. Bioeng

4, 442, 2011). For cells crawling through complex/crowded environments we have
incorporated an additional force feedback on the actin—polymerization rate coming from
the forces exerted by the walls, which must balance with the forces due to the filament
and membrane tension. This can be understood with a Brownian ratchet model, and results
in a polymerization rate that decays exponentially with the forces on the filaments.

(2) Minimal model of crawling and dividing cells

To study the dynamics at large—scales, we have developed a minimal physical model, in
which cells are represented by two particles/disks connected by a finitely—extensible
spring. An active propulsion force is added to the front disk (representing the
protrusions driven by the actin polymerization), while the friction with the substrate
is set to act on both disks (representing the effect of adhesions). To account for
contact inhibition of locomotion (CIL), which describes the manner in which cells stop
moving or change direction upon contact with other cells, the active force was
considered proportional to the separation between the disks. In this way, contact with
external bodies will change the relative orientation and separation of the two disks
and can naturally give rise to rich collision dynamics (i.e., CIL)

Furthermore, to account for the Contact Inhibition of Proliferation (CIP), which
describes the reduction in proliferation as the cell density increases, the model was
extended to include the life—cycle of the cell. We consider two states: crawling or
dividing. During division the active force is added to both the front/back disks, such
that the cell stops moving as it attempts to increase its size. If the size is large
enough to accommodate two cells at the end of the cycle, the original mother cell is



replaced with two new daughter cells. Otherwise, in cases where the environment is too
crowded, cell division is unsuccessful (resulting in CIP).

(3) Machine-Learning of constitutive relations
In order to connect the (micro) cell-level and (macro) tissue—level descriptions, we
have developed a framework to learn constitutive equations. However, given the
complexity of studying cellular tissues (e.g., variable density, active stresses) we
have used polymer melts as a benchmark. In common with other Soft Matter systems, they
exhibit a hierarchy of length— and time—scales and a non—trivial response to external
perturbations. Thanks to their industrial importance, they have been extensively
studied, with many theoretical models available to test our learning method. We have
used Gaussian Process regression to learn the constitutive equation for the stress
from training data generated from microscopic polymer simulations at fixed-strain rates.

4. WFZERCE

To study (A) the mechanosensitive response
of cells to cyclically stretched substrates,
which is one of the preferred experimental
methods for probing the cell, we developed
a phase field model that could incorporate
the large amplitude deformations used in
experiments (~30%). A program implementing
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reorientation. In any case, at large—enough frequencies, all cells aligned parallel to
the stretching (similar to passively advected cells, with d =0). Thus, we predict
that an asymmetry in the adhesion dynamics during stretching, whether inherent to the
cell or the stretching protocol, can be used to selectively align the cells. Furthermore,
we find that the frequency dependent reorientation depends on the sub—cellular process
being probed. In cases where the adhesion dynamics dominate, this reorientation is
explained by the anisotropic role of the driving force, which can stabilize/destabilize
the actin polarization in either parallel/perpendicular directions

Further studies using this detailed model have been performed for (B) cells crawling
through complex environments, here consisting of periodic arrays of pillars. To account
for the cell/obstacle interactions, we have extended the model to (i) prevent adhesions
over the pilar surface, as well as (ii) add the obstacle contribution to the force-
feedback on the actin polymerization rate (i.e., polymerization perpendicular to an
obstacle should decrease as the force exerted by the obstacle increases). We studied
the dynamics of various cell types as they navigated rectangular and hexagonal arrays
of pillars. We found a strong dependence on the cell type and the geometry of the



environment (Fig.2), e.g., soft cells with strong
propulsion are better at navigating through the maze.
This opens the door to designing custom arrays for cell-
sorting and testing.

To investigate (C), the dynamics of crawling and
dividing cells, we have replaced (1) the detailed phase-
field model used for (A-B), with (2) the simplified
mechanical model representing cells as active dumbbells

To understand the role of CIL, we first performed
simulations of non—proliferating cells. Our results are
in good qualitative agreement with experiments. This
includes the velocity decrease with density, as well as
the velocity distributions. Notably, when the CIL
mechanism is turned off (when using a constant motility
force), the correspondence with experiments is lost

Furthermore, we find that collective motion depends
strongly on the cell shape (Fig.3a-c). Cells with larger
fronts r =o0y/0f <1 show ordered collective motion,

whereas cells with smaller fronts r>1 result in
immobile clusters. Counterintuitively, we see that CIL
actually enhances the alignment, even though it does not
directly provide an aligning mechanism. This is a direct
consequence of the collision dynamics and the propulsion
mechanism. We have observed backward-travelling density
and velocity waves, i.e., traffic jams, which have also
been reported experimentally. These results highlight
the role that CIL plays in determining the collective

Fig. 2. Crawling cells in complex
environments. (top) Soft cell with
weak propulsion, (bottom) soft cell
with strong propulsion. Adapted
from Y. Kobayashi, Kyoto Univ., 2020.

properties of migrating cell colonies. This active—dumbbell model was also refined by
explicitly considering the extension and contraction stages of the crawling motion
(through the repeated attachment/detachment of the front and back disks). Our results
show that the shape oscillations inherent to this crawling provide a purely mechanical
signal to locally synchronize and enhance their global motion (to avoid traffic jams).
Previously it was thought that this could only be achieved through bio—chemical
signaling or cell-cell adhesions. Finally, we have also used this minimal model to
study the CIP in growing cell colonies (Fig.3d-e). As reported experimentally, we find
two distinct regimes: early—time exponential growth (determined by the proliferation
rate) and late—time sub—exponential growth (determined by single cell velocity). The
crossover between the two regimes is determined by the onset of CIP.

Finally, we note that we have successfully learned the constitutive relation of
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