科学研究費補助金研究成果報告書

平成22年 5月21日現在

研究種目: 基盤研究(A)	
研究期間: 2006~2009	
課題番号: 18206068	
研究課題名(和文) スピネル型酸化物結晶における電子励起を伴う照射欠陥形成過程 分解能解析	≹の原子
研究課題名(英文) Atomic-scale study of lattice defect formation due to electronic ex in spinel-type oxide	ccitation
研究代表者	
松村 晶(MATSUMURA, SYO)	
九州大学・工学研究院・教授	
研究者番号: 60150520	

研究成果の概要(和文):

次世代原子炉燃料および長寿命核種変換処理用材料の不活性母相材として期待されている、マ グネシア・アルミネート・スピネル(MgAl₂O₄)結晶の強い電子励起を伴う高速重イオン照射に よる構造変化について、最新の電子顕微鏡解析技術と分子動力学計算の両面から解析を行った。 イオンが通過した箇所に形成されるイオントラックの構造ならびにその周辺の不規則化挙動に ついて定量的な知見を得ることに成功した。さらに不規則化の原子挙動としての機構について も明らかにできた。

研究成果の概要(英文):

Structural disordering in magnesium aluminate spinel compounds $MgAl_2O_4$ induced by strong electronic excitation due to irradiation with swift heavy ions were investigated by means of advanced transmission electron microscopy and molecular dynamics simulations, in connection to their application as inert matrix material in nuclear engineering. The results have clearly revealed the atomistic structure inside ion-tracks as well as the induced disordering behavior quantitatively. The atomistic mechanism for transformation into defective rock-salt structure has been also demonstrated. 交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
平成 18 年度	25, 700, 000	7, 710, 000	33, 410, 000
平成 19 年度	5, 400, 000	1, 620, 000	7, 020, 000
平成 20 年度	3, 200, 000	960, 000	4, 160, 000
平成 21 年度	2, 900, 000	870, 000	3, 770, 000
年度			
総計	37, 200, 000	11, 160, 000	48, 360, 000

研究分野: 材料物性学

科研費の分科・細目: 材料工学・金属物性

キーワード: イオン照射、イオントラック、高分解能電子顕微鏡、電子チャンネリングX線 分光、分子動力学計算、規則-不規則相転移、格子欠陥形成エネルギー、格子 欠陥移動エネルギー

1. 研究開始当初の背景

金属酸化物セラミックスであるマグネシ ア・アルミネートスピネル(MgO·nAl₂O₃)は、 優れた耐熱性や高温強度特性を有する上に、 耐照射損傷性にも優れることから、次世代の 原子炉燃料や長寿命核種の消滅処理用母相 材料、将来の核融合炉における高周波加熱窓 材など強い放射線照射環境下で使用される 有力な候補材料として考えられている。 MgO·nAl₂O₃結晶の照射損傷過程ならびに耐 照射損傷性については、材料としての有用性 の検証とともに耐照射損傷セラミックスの

探索・開発指針の観点からも、数々の研究が なされてきた。しかし従来の研究の多くは、 放射線が直接に格子イオンをはじき出す過 程を重視したものであり、実際の使用環境に おける種々の放射線質やエネルギースペク トルを必ずしも十分考慮したものにはなっ ていなかった。長寿命核種の消滅処理用母相 材料として使用した場合には、核分裂によっ て生成する高速イオン(核分裂片: FP)や γ 線、β線などの放射線の被爆により、直接的 な格子イオンのはじき出しに加えて幅広い エネルギーレンジにわたる電子励起(電離作 用)が生ずるが、酸化物セラミックスの電子 励起ならびに電子励起とはじき出しが重畳 した場合の安定性や構造変化についての理 解はあまり進んでいなかった。

研究の目的

本研究は、このような特性を有する MgO·nAl₂O₃スピネル結晶について、特に高密 度の電子励起を引き起こす高速重イオン照 射による構造変化を原子レベルで解明し、電 子励起過程が照射欠陥生成とその挙動に及 ぼす効果を明らかにすることを目的とした。 高速重イオン照射は核分裂片による被爆と 類似した照射環境となるため、それに対する 安定性や構造変化についての重要な知見を 得られることが期待できる。

研究の方法

上記目的のために、本研究では(1)最新の電 子顕微鏡技術を用いた、イオン照射に伴う照 射欠陥の形成とその安定性に関する実験、(2) スピネル中の欠陥形成挙動に関する分子動 力学計算機実験、の2項目を研究の主たる柱 とした。

(1)イオン照射に伴う照射欠陥の形成とその 安定性に関する実験

(001)面方位の MgO·nAl₂O₃ (n=1.1)単結晶 のディスク状試料を作製し、日本原子力研究 開発機構のタンデム加速器を用いて 200 MeV Xe¹⁴⁺イオンならびに 350 MeV Au²⁸⁺イ オンを照射した。透過電子顕微鏡を用いて、 照射によって形成されるイオントラックと その周辺の微細構造を、高分解能原子像観察、 環状暗視野像観察ならびに電子チャンネリ ングX線分光実験(HARECXS法)など最先 端の解析技術を駆使して原子レベルでの高 い空間分解能で明らかにした。

(2)スピネル中の欠陥形成挙動に関する分子 動力学計算機実験

スピネル結晶の単位胞2×2×2の合計448 個の原子からなる体系を想定し、その中で原 子間には

$$V_{ij}(r) = \frac{q_i q_j}{4\pi\varepsilon_0 r} + A_{ij} \exp\left(-\frac{r}{\rho_{ij}}\right) - \frac{C_{ij}}{r^6} + D_{ij} \left\{\exp\left[-2\beta_{ij}\left(r - r_{ij}\right)\right] - 2\exp\left[-\beta_{ij}\left(r - r_{ij}\right)\right]\right\}$$

で表されるポテンシャルが作用するものと 仮定した。この中に含まれるパラメーターは、 MgAl₂O₄スピネル結晶が安定化し、かつ弾性 定数などの物性定数が再現できる値を設定 した。GULP (General Utility Lattice Program) コードを用いた分子動力学計算により、点欠 陥の形成・移動エネルギー、不規則化に伴う エネルギー変化を定量化した後に、点欠陥の 蓄積によって結晶の構造不規則化がどのよ うに誘起されるかを原子レベルの挙動とし て明らかにした。

4. 研究成果

- (1)イオン照射に伴う照射欠陥の形成とその安定性に関する実験
- 照射した高速重イオンが通過した跡に 形成されるイオントラック周辺の原子 配列を高分解能電子顕微鏡観察した結 果の例を図1に示す。観察しているのは イオンの照射表面近くであり、イオンの 通過箇所では35 keV/nmのエネルギー密 度で電子系が励起(電離)されたと見積 もられる。像では、直径が約2 nm の範 囲で構造が変化しているイオントラッ クが散在している。左下に挿入した拡大 像を見ると、イオントラック内部でも結 晶状態を示すフリンジが現れており、結 晶状態が安定であることが示されてい る。しかし原子配列を示すコントラスト が周辺とは変化しており、トラック中心 部では、4面体位置にあるカチオンが減 少して岩塩型結晶構造に近づいている ことが明らかになった。同じ領域を環状 暗視野像で観察すると、トラック内部で

図1: 350 keV Au イオンを 5×10¹⁵ ions/m² 照射した MgO·nAl₂O₃ (*n*=1.1)結晶の高分解能 電子顕微鏡像. イオントラック周辺の拡大像 を右下に挿入.

暗いコントラストを呈し、そこで原子密 度が低下していることが明らかになっ た。すなわち、高速イオンが通過して局 所的に強い電離が生じて加熱され、原子 の一部が離散するとともに局所的に結 晶構造が変化する。

- ② 回折波を強く励起した条件での明視野像の観察により、イオントラック周辺では直径5 nm 程度の範囲に格子歪みが存在することが明らかとなった。また、結像の焦点位置をずらした観察から、イオンが入射した照射表面にはカルデラ状の表面起伏と凹み(ピット)が形成されることが示された。
- ③ 試料結晶に対して電子線の入射方位を 細かく変えながら試料から発生するX 線の強度の変化を測定する HARECXS 実験の結果の例を図2に示す。構成元素 である Mg, A, O からの特性X線強度が、 それぞれ特徴ある変化を示しており、こ のプロファイルから結晶サイトにおけ る存在位置が定量的に解析できる。照射 試料のそれぞれについて HARECXS プ ロファイルを得たところ、図3に示すよ

図2: 非照射試料(a)と350 keVXe イオンを 5×10¹⁵ ions/m² 照射した MgO·nAl₂O₃ (n=1.1) 結晶から得られた HARECXS プロファイル. 電子線入射方位の変化に伴う特性X線強度 の相対変化を示す.変化幅大きいほど位置し ている結晶サイトが限定される明確な規則 配列を有する.

図3: 照射にともなう原子配列の変化. 4面体サイトでの存在確率の変化で示している.

うに $10^{15}m^2$ 程度の照射の範囲ではスピ ネル構造を保って Mg と Al の位置交換 によるカチオン配列の不規則化が進む が、 $10^{16}m^2$ レベルまで強照射すると4面 体位置のカチオン数が減少して全体に 8面体位置を専有する割合が増加する。

- ④ HARECXSプロファイルを基にイオント ラック周辺の不規則化領域の範囲を見 積もったところ、図4に示すように、直 径10 nm程度の範囲にわたることが明ら かとなった。このような不規則化領域は 通常の電子顕微鏡観察では全くコント ラストを呈せず、本研究で初めて実験で 定量的に示された。不規則化が進行して いる領域は、電子励起による局所的な加 熟が影響する範囲と考えられる。
- ⑤ さらにイオンを 10¹⁷m² レベルまで強照 射すると、イオン照射影響部の重なりが

図4: イオントラックの構造模式図.

図5:200 MeVXeイオンを1 10¹⁷ ions/m² 照射した試料の高分解能電子顕微鏡像.照射 量とイオントラックの影響部範囲の大きさ からイオントラックは平均して8回重畳し たと見積もられる.

進み、高分解能像では明確なイオントラ ックコアの構造欠陥領域は消失し、全体 に歪みが蓄積された組織となった(図5 参照)。明視野像でイオントラックの数 密度を測ると、照射量に対して飽和して おり、イオントラック周辺の熱影響部の 重畳により、トラックの生成と回復が同 時に進むことが示された。一方、 HARECXS実験から結晶格子内の原子配 列を見積もると、全体的に4面体位置の カチオンが減少して岩塩型構造に近づ いていることが明らかとなった。

- ⑥ 照射面に対して垂直に試料を切り出してイオンの侵入深さに対する構造変化を観察・解析したところ、図6に示すように約10µmの深さまでイオントラックが形成されていた。理論計算と比較すると電子系へのエネルギー付与密度(電子阻止能)が約12keV/nm以上で、構造欠陥や格子歪みを伴うイオントラックが形成されることが明らかとなった。
- ⑦ イオンの侵入深さが異なる様々な領域からHARECXSプロファイルを得て、不規則化領域の範囲を電子阻止能の関数として求めた。図7にその結果を示す。

図6: 350 MeV Au イオンを照射した試料 の断面明視野像. 照射イオンは左側から飛来 して左端の表面から試料に侵入.

図7: 350 MeV Au イオン照射により形 成された不規則領域直径の電子的阻止能 依存性.

不規則化領域の範囲は深さ(電子阻止能の減少)とともに狭くなる。図から、電子阻止能が Mg については 17 keV/nm 以上、Al については 11 keV/nm 以上で不規則化領域が生成することがわかる。これらの値は、イオントラックの生成閾値とほぼ同程度である。

- (2) 欠陥形成挙動に関する分子動力学計算 機実験
- スピネル結晶の様々な物性値を再現す るよう原子ポテンシャルパラメーター の精密化を行い、点欠陥の生成エネルギ ー,移動の活性化エネルギー,点欠陥 再結合体積,サイト交換に伴うエネル ギー変化の数値解析を進め、これらの 定量を行った。
- ② 陽イオンについてフレンケル欠陥の蓄積が進むと、特に4面体位置に陽イオンが不安定化して占有率が低下し、結晶構造が岩石型構造に近づいていくことが示された。図8にその例を示す。初期状態はスピネル構造のダイヤモンド結晶の対称性を有しているが、2 dpc (変位回数/陽イオン数)後は対称性が面心立方の岩塩型構造に変化しているのがわかる。この傾向は、イオン照射実験で明らかにされている挙動と定性的に合致している。
- ③ 結晶の構造転移は、室温付近の低温では、 直接的に4面体位置の陽イオン占有率 が低下して岩石型構造に近づいていく に対して、1800 K程度の高温ではスピネ ル構造の中で陽イオン配置の不規則化 が進んだ後に、協力現象的に相転移する ことが示された。
- ④ フレンケル対の蓄積過程について詳細 に解析した結果、格子間位置にイオンが 移動することにより、それと最近接とな る4面体位置にある陽イオンが付加的 に格子サイトから離脱することが明ら かとなった(図9参照)。すなわち、格 子間原子の増加に伴い、4面体位置にあ

図8: 300 K で陽イオンのフレンケル欠陥の蓄積による構造変化. 左:初期状態, 右:2.0 dpc後のそれぞれ(100)投影. 黄色: Mgイオン、青色:Alイオン、赤色:Oイ オンを表す.

る陽イオンが減少して岩塩型結晶構造に変化する機構が示された。

図9: 格子間原子(I)により4面体位置に ある格子イオンAが格子間位置に移動す る様子.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計13件)

- ① A. Chartier, T. Yamamoto, <u>K. Yasuda</u>, C. Meis, <u>S. Matsumura</u>, Frenkel pair accumulation induced crystallization of amorphous MgAl₂O₄, *Journal of Nuclear Materials*, **378**, 188-192, (2008), 査読有.
- ② T. Yamamoto, A. Chartier, <u>K. Yasuda</u>, C. Meis, <u>K. Shiiyama</u>, <u>S. Matsumura</u>, Molecular dynamics simulation of point defect accumulation in MgAl₂O₄, *Nuclear Instruments and Methods in Physics Research Section B*, **266**, 2676-2682, (2008), 査読有.
- ③ <u>K. Yasuda</u>, T. Yamamoto, <u>S. Matsumura</u>, The atomic structure of disordered ion tracks in magnesium aluminate spinel, *JOM*, **59**, 27-30, (2007), 査読有.
- ④ K. Yasuda, S. Matsumura, Radiation damage effects in insulators for fusion reactors: Microstructure evolution in MgO-Al₂O₃ system oxide crystal, Advances in Science and Technology, 45, 1961-1968, (2006), 査読有.
- ⑤ K. Yasuda, T. Yamamoto, M. Shimada, S. <u>Matsumura</u>, Y. Chimi and N. Ishikawa, Atomic structure and disordering induced by 350 MeV Au ions in MgAl₂O₄, *Nuclear Instruments and Methods in Physics Research Section B*, 250, 238-244, (2006), 査読有.

〔学会発表〕(計23件)

① <u>S. Matsumura</u>, T. Yamamoto, <u>K. Yasuda</u>, Atomic-scale analysis of irradiation-induced structural change in magnesium aluminate spinel compound, *MRS 2009 Fall Meeting*, 2009年11 月 30 日, Boston, MA, USA.

- ② <u>K. Yasuda</u>, M. Etoh, S, Kawasoe, T. Yamamoto, <u>S. Matsumura</u>, Accumulation of disordered zone in MgAl₂O₄ irradiated with swift heavy ions, *Radiation Effects in Insulators-15*, 2009年8月31日Padova, Italy
- ③ A. Chartier, T. Yamamoto, <u>K. Yasuda</u>, C. Meis, <u>S. Matsumura</u>, Molecular dynamics simulation of irradiation induced phase transition in MgAl₂O₄, *Fouth International Conference on Multiscale Materials Modeling (MMM2008)*, 2008年10月28日, Tallahassee, Florida, USA.
- ④ <u>S. Matsumura</u>, T. Yamamoto, <u>K. Yasuda</u>, <u>K. Shiiyama</u>, A. Chartier, C. Meis, Molecular dynamics study of irradiation-induced structural change in magnesium aluminate spinel compound, *ECI conference on Innovative Dynamics Studies of Materials at the Nanoscale*, 2008年06月30日, Gyeong-ju, Korea
- ⑤ K. Yasuda, S. Matsumura, Production and stability of radiation-induced defects in MgO/Al₂O₃ under electronic excitation, 14th International Conference on Radiation Effects in Insulators, 2007年08月29日, Caen, France.
- ⑥ <u>S. Matsumura</u>, T. Yamamoto, <u>K. Yasuda</u>, Y. Chimi, N. Ishikawa, Atomic resolution transmission electron microscope analysis of disordered ion tracks formed in magnesium aluminate spinel by swift heavy ions, *Materials Science & Technology 2006 Conference and Exhibition*, 2006年10月18日, Cincinnati, OH, USA.
- 6. 研究組織
- (1)研究代表者
- 松村 晶(MATSUMURA SYO) 九州大学・大学院工学研究院・教授 研究者番号: 60150520
 (2)研究分担者 なし
 (3)連携研究者 安田 和弘(YASUDA KAZUHIRO) 九州大学・大学院工学研究院・准教授 研究者番号: 80253491

椎山 謙一(SHIIYAMA KENICHI)九州大学・大学院工学研究院・助教研究者番号: 30243900

波多 聰(HATA SATOSHI)
 九州大学・大学院総合理工学研究院・准教授
 研究者番号: 60264107