科学研究費補助金研究成果報告書

平成21年4月7日現在

研究種目:基盤研究(A)
研究期間:2006~2008
課題番号:18206076
研究課題名(和文)環境調和型電子デバイス配線接合界面形成機構解析とその最適化
研究課題名(英文)Analysis of interface-bond formation mechanism of environmentally
friendly electronic device wiring and optimization of the bonding process
研究代表者
高橋 康夫 (TAKAHASHI YASUO)
大阪大学・先端科学イノベーションセンター・教授
研究者番号:80144434

研究成果の概要:電力効率アップのための次世代電子デバイス,化合物半導体SiC,GaN電極形成とその配線接合機構の解析を実施した.SiCに関しては、6H-SiCを用い、SiC/Ti/A1二層膜の二段昇温法を提案し、その際、生じる界面反応機構の解析を行った.その結果、Ti₃SiC₂(t₁)相がほぼ均一に層形成する機構を見出した.GaNに関しては、p-GaNにおいて、Ni電極反応の結果、気孔(N₂ガス)が電極界面に発生することを見出し、その機構を論じた.n-GaNにおいては、GaN/Ti/A1/Ni/Au 膜との高温反応(873K)によってTiN 薄膜が形成する機構を解析し、電子顕微鏡的に考察し、その条件最適化を論じている.一方、パワーデバイスに使用されるA1 太線超音波配線接合プロセスに関して、接合面を直接その場観察した.半導体電極形成プロセスから第一実装への固相接合条件の最適化を検討している.

交付額

(金額単位:円)

			(亜欧十匹・11)
	直接経費	間接経費	合 計
2006年度	15, 900, 000	4, 770, 000	20, 670, 000
2007年度	13, 400, 000	4, 020, 000	17, 420, 000
2008年度	8, 900, 000	2, 670, 000	11, 570, 000
年度			
年度			
総計	38, 200, 000	11, 460, 000	49, 660, 000

研究分野:工学

科研費の分科・細目:材料加工・処理・表面界面制御

キーワード:環境調和・パワーデバイス・ナノ・界面・接合・インターコネクション 超音波接合・電子実装

1. 研究開始当初の背景

エレクトロニクス実装技術分野では、2000 年以降、微細高密度/3次元化への技術革新 がますます加速していた.微細化,3次元化 の技術に関して、マイクロ接合研究委員会[1, 2], IEEE 国際ワークショップ[3], エレクトロ ニクス実装学会講演会[4]では、活発に議論が なされ,技術革新の提案がなされてきた. 一 方,省エネルギーとエネルギー効率向上の必 要性からパワー化も近年、重要な課題となっ てきている. 高電圧大電流に耐えるためのパ ワーエレクトロニクス実装の技術革新も重 要な課題である、平成17年、溶接学会秋季 全国大会のフォーラム「エレクトロニクス実 装技術動向と今後の展開---環境配慮型車載 用電子実装から次世代パワーエレクトロニ クス実装まで---」では、主に車載をターゲ ットとし、パワーエレクトロニクス実装と次 世代パワーデバイスの開発動向に関した議 論が交わされた[5]. このように,最近の技術 動向を見ると、エレクトロニクス実装は、地 球社会の環境調和を達成すべく, ダウンサイ ジングとアップグレイディングに向かって ビッグバンをなした感がある. どちらの方向 に向かってもエレクトロニクス実装は進展 していく必要があり,環境負荷低減を目指す 固相技術は不可欠である[6].本研究は、これ らの背景と科学技術動向を踏まえ,「環境調 和型電子デバイス配線接合界面形成機構解 析とその最適化」と題して、行われたもので ある.

2. 研究の目的

電力エネルギー制御効率を画期的に高める 環境調和次世代パワーデバイス素子 (IGBT-Si 半導体, SiC, GaN 等化合物半導体) の電極インターコネクション形成とその周 囲の配線接合機構の解析とその最適化を目 指すことが主たる目的である. すなわち, Si 並びに SiC, GaN 等のパワーデバイス素子は電 極材料と外部配線との界面形成ができて初 めてその機能価値が出てくる. SiC 素子は 773K 以上での熱負荷状態で動作可能である 事が報告されている. その電極材と外部配線 間との接合部が,使用中の発熱等によって熱 応力や熱サイクル負荷に耐えられなければ, 広範な実用化は達成できない. すなわち, SiC 半導体/電極/外部配線材/外部基板電極 をトータルに材料設計し且つ界面接合形成 するプロセス制御とその実装接合技術確立 が不可欠となる. そこで, 本研究では, 環境

保全と省エネルギーに大きく貢献するエコ 電子デバイス/電極材料/外部配線/外部 基板電極の界面形成機構の解析を行い、その 解析から得られた知見を活用し, その界面形 成制御と最適条件選定を基に、各接合界面部 の高信頼性確保を図ることが目的である.本 研究で,明確化する事柄は以下の3点である. 1) 外部配線材との適合性から見た SiC 半導体 /コンタクト電極材の選択設計と界面反応 解析.2) 配線接合界面形成機構解析.3) デバ イス電極/外部配線材凝着機構・接合機構解 析から見たプロセス最適化.これら3点に 注目して、パワーエレクトロニクス実装にお ける電極インターコネクション形成解析、固 相接合機構解析、ナノ界面形成技術、超音波 接合プロセス最適化を実施した.

3. 研究の方法

(1)素子電極インターコネクション形成 ①SiC 電極形成プロセス

基板には(0001)面に平行な表面を有す る 6H-SiC 単結晶ウェハを 5.0×5.0 mm に切 り出して使用した. 六方晶 SiC の (0001) 面 には極性があるが、本研究では Si 終端され た面を使用した.この基板上に真空熱蒸着法 により Ti 100 nm, A1 500~1000 nm の順に 真空を破ることなく積層した. 蒸着源に用い た Ti と Al の公称純度はそれぞれ 99.9%と 99.999%であった.熱処理は赤外線加熱式真 空炉を用い、1×10⁻⁴ Paの真空中で1273 K,60 ~3600 s の条件で行った.熱処理後のコンタ クト界面組織は透過型電子顕微鏡(TEM)およ びエネルギー分散型 X 線分光分析(EDS)によ り解析した. また, SiC と Ti, A1 の界面反応 挙動を調査するため,示差走査熱量計 (DSC) により SiC, Ti, Al の混合粉末試料を用いて 熱分析した.熱分析で現れた反応ピーク温度 よりもわずかに高い温度で 3600s, 同組成の 混合粉末試料を真空焼鈍し, XRD により反応 相を同定し、各ピークに対応する反応を明ら かにした. その結果に基づき, 二段昇温法に より,多層電極インターコネクションを形成 した.

②GaN 電極系形成プロセス

窒化ガリウム(GaN)デバイスも、金属材料 を介して外部回路と接続実装せねばならな いが、禁制帯幅が広いためGaNと金属材料の 界面でのコンタクト抵抗が問題となる.界面 組織制御の指針の欠如は、GaNとコンタクト 金属元素のM-Ga-N3元系平衡状態図さえ満 足に整備されていないことからも類推され る. そこで本研究では、GaNとコンタクト膜 の界面組織制御に向けた基礎研究の一環と して、p型およびn型GaNに対する代表的なコ ンタクトとして、Ni単層膜を形成し熱処理し た膜、およびTi / A1 / Ni / Au多層膜を形 成し、その後、熱処理し、それらの界面組織 の透過電子顕微鏡(TEM)によるナノスケー ル解析を実施した.GaNはサファイア(1120) 面上に1.5µmエピタキシャル成長させた表面 方位(0001)の膜状試料を用いた.このGaN上 に2種類のコンタクト膜を形成した.一方は 厚さ 300 nmのNi単層膜であり

他方はTi, Al, Ni, Auの順にそれぞれ20, 200, 40, 50 nm 積層させた多層膜である. また,

Ni 単層膜を蒸着する GaN 試料は, 蒸着に先立 って誘導結合プラズマエッチング (ICP) 処 理した後, アンモニアガス雰囲気にて 1173 K, 1200 s, 次いで窒素雰囲気にて 1123 K, 300 s の熱処理を施したものとこれらの表面処理 を施さずに直接 Ni を蒸着したものの2 種類 を作製した. 成膜後の試料は全て 101.3 kPa の N_2 雰囲気中で 873 K, 300 s にて熱処理し た.

以上のプロセスにより形成された GaN とコ ンタクト膜の界面組織を透過電子顕微鏡 (TEM)により解析した.TEM 試料の作製には 収束イオンビームマイクロサンプリング加 工法を用いた.また,マグネトロンスパッタ リング装置も使用し,薄膜形成の最適化を実 施した.

(2)外部配線接合実験方法

産業機器や交通車両等の制御には、大電流 パワーエレクトロニクスデバイスは不可欠で ある. 外部配線には直径100µmから500µmの 太径Alワイヤが用いられ、超音波接合されて いる. 高品質で信頼性の高い超音波接合技術 を確立するためには,超音波電源出力,荷重お よび超音波印加時間等のプロセス因子を適切 に制御しなければならない.まず、太径AIワ イヤとデバイスSi基板との超音波接合におけ る初期凝着形成機構について調査を行った. 初期凝着形成機構に立脚し,超音波電源出力, 荷重および超音波印加時間をそれぞれ変化さ せて超音波接合を行い,超音波接合後に観察 される摺動痕や断面組織,さらにはAlワイヤ 変形挙動の点から、プロセス因子が超音波接 合過程にどのように影響するかを検討した.

ワイヤ材として純A1(公称純度99.9+%,ワ イヤ直径300mm,線引加工材)を用いた.基板 材は5.0×5.0×1.0mmの(001)Siウェハを用い た.また,その場観察用として,直径20.0mm, 厚さ3.0mmの石英ガラス(SiO₂)を用いた. 超音波接合は超音波ボンダー(110kHz,75kHz, ないしは60kHz)を用いて行った. Table 1は本 研究で採用した超音波接合条件(110kHz, V grooveの場合)である. 超音波接合後の試料か ら塩酸浸漬によってAlワイヤを除去し, Si基 板のAlワイヤ凝着部の摺動痕の光学顕微鏡観 察を行った. また, AlワイヤとSi基板の接合 部の断面観察は, SEMを用いて行った. さらに, TEM観察も行った.

Fig. 1は,使用した接合装置の模式図(その場観察用,V groove,60kHz)である.接合装置には超音波振動印加機構と接合荷重印加機構が備わっているほか,ウェッジツール先端の振動(Δx)をレーザドップラ振動計測系(サンプリング周期2560kHz)で,ウェッジツールの沈み込み($-\Delta z$)をレーザ変位計測系(サンプリング周期50kHz)でそれぞれ計測し,そして基板とワイヤの凝着界面をSi02基板裏面より実体顕微鏡を介して高速度ビデオカメラ(1×10^3 frames/s)で観察するようになっている.

Table 1 Conditions of ultrasonic Al wire bonding.

Parameters (unit)	Value / Range	
Frequency (kHz)	110	
Ultrasonic power (W)	$1.0 \sim 3.0$	
Load (N)	$0.5 \sim 7.5$	
Time (ms)	$50 \sim 200$	

Fig.1 Schematic illustration of the ultrasonic bonding apparatus.

4. 研究成果

(1) 電極インターコネクション形成

示差走査熱量計(DSC)を用いて, SiC+Ti+A1 混合粉末試料の昇温過程の反応解析を実施 した. 921 K において吸熱ピーク, 959 K お よび 1270 K において発熱ピークが現れるこ とがわかった. 921 K における吸熱ピークは A1の溶融に対応する.一方,959Kおよび1270 K における発熱ピークは, SiC, Ti, Al の間 で発熱反応が生じていることを表している. XRD による解析の結果, 959 K においては Ti と Al(liq.) の反応により TiAl, が生成する こと、1270 K においては SiC と TiAl₃の反応 によって Ti₃SiC₂ が生成することが明らかと なった. SiC+Ti, SiC+A1 各混合粉末試料につ いても上記と同様にして反応挙動を解析し た. その結果, ①SiC 基板と Ti/Al 積層膜の 反応と積層膜内の層間反応は反応開始温度 が異なること、②SiCとTiAl。の反応によって 直接的に Ti₃SiC₂ を生成することが可能であ ること、③SiC と Ti の反応では直接的に Ti₃SiC₂を生成できず反応開始温度も 1270 K よりも高いこと、の3点が明らかとなった. 以上の知見から, SiC に接して一様な Ti₃SiC₂層を形成するには、まず Ti/Al 積層膜 内の層間反応により SiC に接する TiAl。層を

形成することが重要であることがわかる.

Fig. 2 Interfacial microstructure of SiC / Ti / Al specimen annealed under stepwise heat treatment at 1003 K, 300 s and then at 1273 K, 600s. (a) Bright field image and (b) diffraction pattern.

TiAl, 層を形成するには, Ti/Al(liq.) 界面で の一様な一次元拡散反応を実現すれば良い. 従って,一度に Ti₃SiC₂ 生成温度である 1270 K まで昇温するのではなく, 969 K 以上のでき るだけ低い温度でTi 層がTiAl,層形成のため に消費されるのに十分な時間保持を行い、そ の後,1270Kまで昇温するステップ昇温法が 有効であると判断される. Fig. 2は, 1003 K で 300 s 保持後 1273 K,600 s の焼鈍を施し た試料界面の TEM 明視野像と電子回折パター ンである. SiC に接して Ti₃SiC₂が厚さ 67nm の層状に形成されている. また, Ti₃SiC₂は界 面反応により成長する際, SiC に対してエピ タキシャルな方位関係を維持することがわ かる.なお、組成制御による Ti₃SiC₂ 層の直 接形成も試みているが安定確保には至って いない.

GaN に関しても電子顕微鏡的検討を行った. 表面処理を経た GaN に Ni を電子ビーム蒸着 し, N₂ ガスフロー雰囲気中で 873 K, 300 s の熱処理によって形成されたコンタクト界 面の観察を行った.そのコンタクト界面には, 半楕円体状またはファセットを呈した平板 状や角錐状のボイド(気孔)が張り出すよう に形成され、GaN との界面はほぼ平滑で、コ ンタクト膜と GaN が直接接触している領域と も段差などは観察されなかった. GaN と Ni は 界面反応により Ni₅Ga3 を生成していることが 示唆された. GaNとNiは, 873 K, 300 sの 熱処理で,反応(1): 3GaN + 5Ni = Ni₅Ga₃ + 3N の界面反応が生じると考えられる. 質量保存 則から,反応(1)によって生じる N は GaN, Ni, Ni₅Ga₃のいずれかに固溶するか,あるいは N₂ ガス相として系外に放出されるか界面にボ イド(気孔)を形成する. Ni-Ga-N 三元系状 態図で、GaN, Ni, Ni₅Ga₃のいずれの相もほと んどNを固溶できないことから、界面に観察 されたボイドは界面反応によって生じた N₂ ガスが集まって形成されたと考えられる. GaN 上に Ti / Al / Ni / Au 多層膜を積層さ せ, 873 K, 300 s にて熱処理した後の界面組 織を TEM により断面方向より観察した. 熱処 理後のコンタクト膜は、初期の4層構造が失 われ, 膜厚(310 nm) に比して粗大な等軸結 晶粒によって構成されている.これは、本研 究で採用した熱処理条件においてコンタク ト膜内の層間反応が生じ、さらに反応生成相 の結晶粒が成長していることを示唆してい る. GaN とコンタクト膜の界面には暗コント ラストを呈する非常に薄い層が観察される. GaNに接して厚さ4.4 nmの層状組織が形成さ れているが,この界面は密着しており,ボイ ドは形成されていない.

Fig. 3 Change in shape of the contact area during ultrasonic bonding of Al wire to SiO_2 substrate under the condition of P = 1.0 W, F = 3.0 N. The states at which (a) unloaded condition, (b) the initial bonding force is applied, (c) the ultrasonic vibration is applied for 50 ms, and (d) the bonding force is still applied after the application of the ultrasonic vibration are shown.

界面近傍の制御視野電子回析パターンから, 相と面指数から方位関係を明らかにした.そ の結果から, TiN 層が GaN 上に存在すること が証明できた.反応(2): GaN + Ti = TiN + Gaによって生じる Ga も Ti あるいはその他の 多層膜成分と固溶体あるいは化合物を生成 していなければならないが,コンタクト膜か ら得られた電子回折パターンの解析からは Ti, Ni, あるいは Au と Ga の化合物は同定で きなかった.

(2) 外部配線超音波接合

Fig. 3にSi0₂基板とAl ワイヤの超音波接 合において,周波数 60kHz,F = 3.0 N,P =1.0 W としたときの接合部のその場観察形態 変化を示す.Fig. 3(a)は無負荷の状態であ る.Fig. 3(b)は初期荷重を印加した直後で 超音波印加前の写真である.この段階では, ワイヤの変形は非常に小さい.Fig. 3(c)は 超音波印加開始から 50 ms 後の状態である. 超音波印加によりワイヤの変形が誘起され, 接触部の中央が超音波印加方向と垂直に広 がってレンズ状となる.Fig. 3(d) は超音波 印加後の写真(荷重は印加した状態)である. その場観察から,超音波接合における凝着機 構,スリップアンドフォールディング機構が 明らかとなり,この機構をうまく利用してプ ロセス制御すれば,接合過程を最適化できる ことも示された.

参考文献:

1) 岡本和也:「半導体微細化技術の進展と 3D 実装への期待」溶接学会第 81 回マイクロ接 合研究委員会資料, MJ-495-2006 (2006) pp. 1-14.

2)須賀唯知,重藤暁津,伊藤寿浩:「Cu バン プレス超微細直接接合」溶接学会第 85 回マ イクロ接合研究委員会資料,MJ-525-2007 (2007) pp. 47-66.

3)Proceeding of 1st International IEEE workshop "Low Temperature Bonding 3D Integration" The University of Tokyo, Nov., 8-9th (2007).

4)第4回技術講演会「3次元積層技術を支え る接合技術の最新動向」エレクトロニクス実 装学会関西支部主催,大阪大学,中之島セン ター,2月15日(2008),講演会資料.

5)溶接学会 H17 秋季全国大会講演概要第 77 集 F-1〜F-36,または,溶接学会第 79 回マイ クロ接合研究委員会資料,福井大学,9月2 2日(2005).

6)Y. Takahashi and M. Maeda: "Application of Solid State Bonding to Manufacturing Eco Products," Smart Processing Technology, Vol.1 (2006) High Temp. Soc., Japan, pp. 163-166.

5. 主な発表論文等

[学術雑誌論文等](計13件)

①佐藤貴昭,井上直人,前田将克,高橋康夫 「錫蒸着膜を介した銅の常温超音波接合」 Mate 論文集, Vol. 15, 溶接学会, Jan. 29-30, pp. 375-378 (2009) (査読有). ②井上直人, 佐藤貴昭, 前田将克, 高橋康夫 :「銅と電解錫めっき銅基板の無加熱超音波 接合」Mate論文集, Vol. 15, 溶接学会, Jan. 29-30, pp. 367-370 (2009) (査読有). ③ M. Maeda, N. Inoue, T. Sato, and Y. Takahashi: "Early stage of Solid State Interfacial Reaction between Copper and Tin," Defect and Diffusion Forum, Vols. 283-286, pp. 323-328(2009)(査読有) (<u>4)M. Maeda</u>, <u>Y. Takahashi</u>, M Fukuhara, X. Wang, and A. Inoue : "Ultrasonic Bonding of Zr55Cu30Ni 5A110 Metallic Glass, " Materials Sci. Eng. B, Vol. 141-144(2008) (査読有).

- <u>前田将克</u>,<u>高橋康夫</u>:「窒化ガリウムと 金属蒸着膜との界面組織」Mate論文集, 溶接学会,Vol.14,pp. 351-354 (2008) (査読有).
- ⑥米島康弘,北村英樹,<u>前田将克</u>,<u>高橋康夫</u>:

「超音波接合における配線材変形挙動」Mate 論文集,溶接学会,Vol.14, pp. 347-349 (2008) (査読有).

〔学会発表〕(計 11 件)

① Kitamura, Y. Yoneshima, <u>M. Maeda</u>, and <u>Y. Takahashi</u>: "In-situ Observation of Ultrasonic Aluminum Wire Bonding," 8WS (The 8th International Welding Symposium), JWS, DVD-ROM, No. 182, Kyoto, Nov., 16-18th(2008).

②N. Matsumoto, H. Hatagawa, <u>M. Maeda</u>, and <u>Y. Takahashi</u>: "Reaction between GaN and Metallic Deposition Film," 8WS (The 8th International Welding Symposium), JWS, DVD-ROM, No. 178, Kyoto, Nov., 16-18th, (2008).

(3) T. Sato, N. Inoue, <u>M. Maeda</u> and <u>Y. Takahashi</u>: "Low Temperature Solid State Bonding of Cu and Sn for Electronic Packaging," 8WS (The 8th Inter- national Welding Symposium), JWS, DVD-ROM, No. 179, Kyoto, Nov., 16-18th, (2008).

(<u>4)M. Maeda</u>, K. Yamane, <u>S. Matsusaka</u> and <u>Y. Takahashi</u>: "Relation between Vibration of Wedgetool and Adhesion of Wire to Substrate during Ultrasonic Bonding," 8WS (The 8th International Welding Symposium), JWS, DVD-ROM, No. 101, Kyoto, Nov., 16-18th (2008).

⑤<u>前田将克</u>,畑川裕生,<u>高橋康夫</u>:「窒化ガ リウム単結晶と金属薄膜の界面組織」,平成 20 年度溶接学会秋季全国大会(小倉), 9/10-12, Vol.83, pp. 318-319,(2008).

(6) <u>M. Maeda</u>, H. Hatakawa and <u>Y. Takahashi</u>: "Interfacial Structure between Gallium Nitride and Metallic Deposition Films," Proceeding of 6th International Materials Technology Conference and Exhibition (IMTCE 2008), 24th-27th, August, Kuala Lumpur (Malaysia), paper No. RD14, CD-ROM (2008)

〔図書〕(計 1件)

① <u>Y. Takahashi</u>: "Microjoining and Nanojoining,"

edited by Y. Zhou, Chapter 5, "Modeling of Solid State Bonding", pp. 91-120, Woodhead publishing, Cambridge, CB21, 6AH, UK, (2008).

〔産業財産権〕 ○出願状況(計 8件) 名称:「オーミック電極およびその形成方法」 発明者:<u>高橋康夫</u>,<u>前田将克</u>他3名 権利者:大阪大学,トヨタ自動車(株) 種類:特許 番号: 特願 2009-020850 出願年月日:2009/1/30 国外の別:国内 名称: 「p 型 4H-SiC 基板上のオーミック 電極の形成方法」 発明者:<u>高橋康夫</u>,<u>前田将克</u>他3名 権利者:大阪大学,トヨタ自動車(株) 種類:特許 番号: PCT/JP2008/055158 出願年月日:2008/3/13 国外の別:国外 名称:「超音波接合方法及び超音波接合体」 発明者:<u>高橋康夫</u>,<u>前田将克</u>他4名 権利者:大阪大学,トヨタ自動車(株) 種類:特許 番号: 特願 2008-200955 出願年月日:2008/8/4 国外の別:国内 名称: Semiconductor Devices and Manufacturing Method Thereof 発明者:<u>高橋康夫</u>,<u>前田将克</u>他3名 権利者:大阪大学,トヨタ自動車(株) 種類:特許 番号: PCT/JP2007/069135 出願年月日:2007/09/21 国内外の別:国外 [その他] なし 6. 研究組織 (1)研究代表者 高橋 康夫(TAKAHASHI YASUO) 大阪大学・先端科学イノベーションセンター 教授,研究者番号:80144434 (2)研究分担者 野城 清(NOGI KIYOSHI) 大阪大学・接合科学研究所・教授 研究者番号:40029335 前田 将克(MAEDA MASAKATSU) 大阪大学・先端科学イノベーションセンター 助教,研究者番号:00263327 松坂 壮太(MATSUSAKA SOUTA) 千葉大学・工学部・助教 研究者番号: 30334171

(3)連携研究者