科学研究費補助金研究成果報告書

平成 21年 5月 21日現在

研究種目:基盤研究(B) 研究期間:2006~2008 課題番号:18360043 研究課題名(和文) 極微量放射性核種シリコン32の加速器質量分析による超高感度検出法 の開発 研究課題名(英文) Development of a high-sensitivity detection method for trace radionuclide silicon 32 by an accelerator mass spectrometry 研究代表者 笹 公和 (SASA KIMIKAZU) 筑波大学・大学院数理物質科学研究科・講師 研究者番号:20312796

研究成果の概要: 極微量放射性核種シリコン 32 を高感度で検出できる、大型タンデム加速器 を用いた加速器質量分析法(AMS)を開発した。シリコン 32 の同重体である¹⁶0₂分子を用いたパ イロット分子ビーム法により、大型タンデム加速器の電圧安定制御を実施した。測定試料はSi0₂ として、²⁸Si⁻では 430 nA のビーム電流値を得た。測定対象核種の³²Si³⁺について加速電圧 9 MV で、加速エネルギー81 MeV により AMS 測定を実施した。新たに開発したガスΔE-半導体検出器 を用いて、シリコン 32 と妨害となる硫黄 32 の分離識別を実施し、シリコン 32 の AMS を用いた 高感度検出に成功した。

交付額

(金額単位:円)

-			(亚碩平匹・1))
	直接経費	間接経費	合 計
2006年度	6, 900, 000	2, 070, 000	8,970,000
2007年度	3, 800, 000	1, 140, 000	4, 940, 000
2008年度	2, 100, 000	630, 000	2, 730, 000
総計	12, 800, 000	3, 840, 000	16, 640, 000

研究分野:加速器科学、加速器質量分析法 科研費の分科・細目:応用物理学・工学基礎・応用物理学一般 キーワード:加速器質量分析法、年代測定、放射性核種、シリコン32、タンデム加速器

1. 研究開始当初の背景

(1) 加速器質量分析法(AMS)を用いた 計測は、炭素14[¹⁴C(半減期5730年)]を中心 にベリリウム10 [¹⁰Be(半減期151万年)]、 アルミニウム26[²⁶A1(半減期71.6万年)]、 塩素36[³⁶C1(半減期30.1万年)]、ヨウ素129 [¹²⁹I(半減期1570万年)]などの開発が進み、 既に実用段階に入っている。加速器質量分析 法に用いられる加速器はタンデム静電加速 器であり、負イオンを生成して加速する。タ ンデム静電加速器では、荷電変換材を通過さ せて負イオンを正イオンに変換し、2段加速

をおこなう。通常の質量分析法で問題となる 測定対象核種の妨害同重体分子等は、荷電変 換材を通過する際に分解遊離される。高エネ ルギーに加速された測定対象核種のイオン は、静電及び磁場分析器により、エネルギー 及び運動量の選別がおこなわれる。最終的に は粒子検出器で、物質中のエネルギー損失Δ Eの差を利用して、同重体イオンや散乱イオ ンと分離識別され、測定対象核種が1個単位 で計測される。エネルギー損失を利用するに は最低、核子当たり0.5 MeV 以上の加速エネ ルギーが必要となる。つまり重い放射性核種 の識別には、高い加速エネルギーが必要であ る。また、加速エネルギーが高ければ、エネ ルギー損失差が大きくなり、それだけ妨害イ オンとの識別も容易となる。

(2) シリコン 32(³²Si)は、主に2次宇宙線 と大気中の Ar の核破砕反応により生成され る誘導放射性核種である。しかしながら、天 然に存在する ³²Si は 0.1ppt 以下と極微量で あるため、放射能測定等の通常の検出器によ る方法では、その検出は不可能である。また、 加速器質量分析法でも、³²Siの場合は³²Sが同 重体の妨害核種となる。³²Sは硫黄の安定同位 体中で、最も多い核種(存在度 95.02%)である。 硫黄はあらゆる環境中に入り込む性質があ り、加速器質量分析法による超高感度分析で は容易に測定結果に紛れ込み影響を与える。 そのため、³²Sの影響を試料調整及び質量分析 系でいかに排除するかが、本研究での重要な 課題となる。³²Si の加速器質量分析は、以上 の理由から最も難しい測定対象核種となっ ている

2. 研究の目的

加速器質量分析法は長寿命放射性核種を 超高感度に検出できる手法であり、より重い 放射性核種の検出には、より高い加速エネル ギーが必要となる。特に³²Siの検出は、妨害 核種³²Sの影響が大きい為、その測定は難し い。しかしながら、研究代表者等が開発した 国内最大の加速器質量分析装置により、80 MeV 程度まで³²Si を加速すれば、試料調整に よる硫黄除去と新粒子識別装置の開発及び ガス充填型粒子検出器の開発に拠って、³²Si の加速器質量分析による超高感度測定が可 能となる。また大型タンデム加速器の加速電 圧を安定に制御する為に、³²Si の同重分子と なる 160%を利用する独創的なパイロット分子 ビーム法を提案する。このパイロット分子ビ ーム法による大型タンデム加速器を用いた 加速器質量分析を開発することが、本研究の 目的である。

加速器質量分析法では、数十年から数百年 範囲の年代を測定できる対象核種が無く、 ³²Siの加速器質量分析法の開発に成功すれば、 比較的近年の年代測定における新たな測定 手段となり、その効果は大きい。Siが含まれ る試料の環境動態調査、年代測定が可能とな り、加速器質量分析法の応用研究のさらなる 進展が期待できる。

- 3. 研究の方法
- (1)加速器質量分析法の開発

本研究では、筑波大学の 12UD ペレトロン タンデム静電加速器を利用した。加速電圧制 御とその光学要素設定に ³²Si の同重体 ¹⁶0,を パイロット分子ビームとして利用する手法 を開発した。AMS 測定では、SiO₂試料から¹⁶O₂⁻ 分子を引き出し、加速電圧の安定制御を試み た。粒子識別系として、第2 荷電変換膜(炭 素薄膜 11 μ g/cm²)、8°静電偏向器(曲率半 径 1000 nm, E/q = 10 MeV)、45°分析電磁石 を開発した。また、加速器パラメータは、²⁸Si⁸⁺ に対して加速電圧 10.29 MV として、加速エ ネルギー92.6 MeV で光学要素パラメータを決 定した。²⁸Si⁻の低エネルギー側でのビーム電 流値は、最大で 430 nA であった。また、AMS システム全体の Si ビームの透過率は、約5% であった。図1に³²Si の AMS 測定の加速器設 定の概略図を示す。

³²Si⁸⁺については加速電圧 9 MV として、加 速器パラメータ設定に利用した ²⁸Si⁸⁺に対し て ME/q²を揃えて加速エネルギーを 81.0 MeV とした。なおパイロットに利用した ¹⁶0⁴⁺は 40.5 MeV となる。³²Si⁸⁺は、第2荷電変換膜に より ³²Si¹¹⁺に荷電変換される。粒子識別系の 静電、磁場分析器等の最適値を設定し、ガス ΔE =半導体検出器により ³²Si と ³²S の粒子識 別を試み、AMS 測定性能を確認した。

図 1 12UD ペレトロンタンデム加速器を用いた³²Siの AMS 測定設定

(2) Si 試料調整法の検討

妨害となる硫黄 32(³²S)の除去を目的とし て、BaSO₄沈殿による硫黄除去方法の検討をお こなった。帯電防止用添加物として SiO₂試料 に Nb を添加する手法を考案し、硫黄除去効 果を検討した。また ³⁶C1 の AMS 測定でも、同 様に硫黄 36 が妨害となる為、³²Si と ³⁶C1 の双 方について、硫黄除去方法の検討を進めた。

³²Si 検定試料については、NH₄Cl に中性子を 照射して作成し、試料処理により SiO₂の化学 形とした。検定試料の同位体比は、放射能測 定により、³²Si/^{nat}Si で 2.3×10⁻¹¹ と見積もら れた。SiO₂のバックグラウンド測定用試料と しては、SiO₂試薬(99.999%,株式会社ニラコ) の粉末を使用した。

(3) ガスΔE-半導体 E 検出器の開発

³²Si の AMS 測定用に 2 連電極型のガス Δ E-半導体 E 検出器を開発した。ビーム入射窓 にアラミド膜(4 μ m)を使用している。粒子検 出用電離ガスは、高純度イソブタンガス(使 用標準ガス圧力 670 Pa)を使用する。半導体 検出器は、45 mm×45 mmの大面積 PIN シリコ ンフォトダイオード (S4276-02 浜松ホト ニクス株式会社製)を使用した。イソブタン ガス中での粒子の損失エネルギーと半導体 検出器へ到達した全粒子エネルギーに関し て同時計数法を用いて検出する。図 2 に本研 究課題で開発を行ったガス Δ E-半導体 E 検 出器の概略図を示す。

図 2 ガス ΔE-半導体 E 検出器の概略図

4. 研究成果

(1) Si0₂ 試料からの負イオンビーム

加速器質量分析用の負イオン源に SiO。試 料を装填し、引き出された負イオンの質量分 析をおこなった。試料はSi02試薬にAgとNb を添加した試料を用いた。図3にイオン源か らの負イオンビームの質量分析結果を示す。 安定同位体イオンの²⁸Si⁻と加速器制御に必 要な¹⁶02⁻を引き出すことが重要となる。帯電 防止用添加物としては、試験測定の結果、Ag よりも Nb の方が硫黄の影響が少ないことが 判明した。最終的に SiO₂: Nb = 1:1 の割合で 混入させた試料を AMS 測定に利用した。²⁸Si⁻ ビームは250~430 nA 程度となった。また³²Si と同重体の1602は、加速器電圧の安定制御に 必要な nA 以上の出力を得られた。表1に標 準的な Si0。試料からの負イオン引き出し結 果を示す。また図3にSi0。試料からの負イオ ン質量分析スペクトルを示す。

表1 SiO₂試料からの負イオンビームの引き 出し結果

Ion	B[mT]	Current [nA]
¹⁶ 0 ⁻	420.01	4400
²⁸ Si ⁻	555.84	277
²⁹ Si ⁻	565.68	14.4
³⁰ Si ⁻	575.44	8.2
$^{16}O_2^{-}$	594.4	27
$^{35}C1^{-}$	621.49	75
³⁷ C1 ⁻	638.83	21
²⁸ Si0 ⁻	696.95	2.1
²⁹ SiO ⁻	704.95	0.8
³⁰ SiO ⁻	712.59	0.12
²⁸ Si ₂ ⁻	786.23	5.8
$^{28}Si0_{2}^{-}$	813.89	122
²⁹ SiO ₂ ⁻	820.71	8
³⁰ SiO ₂ ⁻	827.54	4.5

図 3 SiO₂ 試料からの負イオン質量分析ス ペクトル

(2) AMS による³²Si の測定結果

加速電圧 9 MV として、³²Si⁸⁺を 81.0 MeV で 加速して、加速器質量分析測定をおこなった。 第 2 荷電変換膜によって、³²Si⁸⁺は ³²Si¹¹⁺に変 換される。この時の ²⁸Si⁻のビーム電流値は 430 nA であった。²⁸Si⁻のビーム透過率は、加 速器に対して 19.5%、質量分析ビームライン に対して 24.6%であった。AMS システム全体

のビーム透過率は4.8%となった。

³²Si 検定試料(³²Si/^{nat}Si = 2.3×10⁻¹¹)の加 速器質量分析法による粒子識別2次元スペク トルを図4に示す。³²Si¹¹⁺(81.0 MeV)に関し て、妨害となる³²S¹¹⁺の散乱粒子との分離識別 に成功した。5分間測定で、³²Si¹¹⁺の粒子検出 数は356 countsであった。

図 4³²Si 検定試料の粒子識別 2 次元スペク トル

また検出限界測定の為の SiO₂ 試薬を用 いたブランク試料の測定結果を図 5 に示す。 5 分間測定で、検出粒子数は 3 counts であ った。

図 5 Si0₂ブランク試料の粒子識別 2 次元ス ペクトル

³²Si の高感度検出の為の加速器質量分析装 置の開発を行った。特に本研究課題において、 加速器質量分析の為の粒子識別系とガスΔ E-半導体 E 検出器を新たに開発した。³²Si 検定試料を用いて、³²Si の粒子識別測定に成 功した。妨害となる ³²S の散乱粒子スペクト ルが未だ強く残留しているが、³²Si の明確な 分離識別が可能となった。本研究課題での加 速器質量分析装置の検出限界としては、ブラ ンク試料の測定結果から ³²Si/^{nat}Si~5×10⁻¹³ となった。

(3) 今後の展開について

³²Si の加速器質量分析法による高感度検出 に成功した。今後は、加速器質量分析法によ る³²Si の測定精度向上を図り、繰り返し測定 精度として±10%以内を目標とする。また、 妨害となる硫黄の影響がまだ強く残ってお り、試料処理方法の開発も今後の継続検討課 題である。本研究課題での加速器質量分析装 置を用いて、³²Si/^{mat}Si 同位体比で 10⁻¹² レベ ルの測定が可能となった。今後は、自然環境 レベルの 10⁻¹³ レベルの同位体比測定を目指 す。現在、環境試料からの SiO₂試料の作成方 法を開発中である。半減期 140 年程度の ³²Si の利用は、比較的近年の年代測定にその応用 が期待される。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 7件)

- <u>Kimikazu Sasa</u>, Tsutomu Takahashi, Yuki Tosaki, Yuki Matsushi, <u>Keisuke Sueki</u>, Michiko Tamari, Takahiro Amano, Toshiyuki Oki, Shozo Mihara, Yoshihiro Yamato, <u>Yasuo Nagashima</u>, 他 3 名, Status and research programs of the multinuclide accelerator mass spectrometry system at the University of Tsukuba, Nuclear Inst. and Methods in Physics Research B, 2009, in press. 査読有
- ② Yuki Tosaki, <u>Norio Tase</u>, Masaya Yasuhara, <u>Yasuo Nagashima</u>, <u>Kimikazu</u> <u>Sasa</u> and Tsutomu Takahashi, An Estimate of Local Bomb-produced ³⁶Cl Fallout Using the Depth Profile of Groundwater in the Tsukuba Upland, Central Japan. Hydrological Research Letters, Vol. 2, 9-13, 2008. 査読有
- ③ <u>K. Sasa, Y. Nagashima</u>, T. Takahashi, <u>K. Sueki</u>, Y. Tosaki, M. Tamari, 他 10 名, Status of the Tsukuba AMS system, UTTAC ANNUAL REPORT 2007, 4-5, 2008. 査読無
- ④ 長島 泰夫,関 李紀,笹 公和,高橋 努, 大型タンデム静電加速器による加速器質 量分析,真空,50,475-479,2007.査読 有
- ⑤ Yuki Tosaki, <u>Norio Tase</u>, Gudrun Massmann, <u>Yasuo Nagashima</u>, Riki Seki, Tsutomu Takahashi, <u>Kimikazu Sasa</u>, <u>Keisuke Sueki</u>, 他5名, Application of ³⁶Cl as a dating tool for modern groundwater, Nuclear Inst. and Methods in Physics Research B, 259, 479-485,

2007. 査読有

- ⑥ <u>Kimikazu Sasa</u>, <u>Yasuo Nagashima</u>, Tsutomu Takahashi, Riki Seki, Yuki Tosaki, <u>Keisuke Sueki</u>, 他4名, ²⁶Al and ³⁶Cl AMS system at the University of Tsukuba: A progress report, Nuclear Inst. and Methods in Physics Research B, 259 41-46, 2007. 査読有
- ⑦ <u>Kimikazu Sasa, Yasuo Nagashima,</u> Tsutomu Takahashi, Riki Seki, Yuki Tosaki, <u>Keisuke Sueki</u>, 他5名, Status and future plans of the Tsukuba AMS system, Proceedings of the First East Asian Symposium on Accelerator Mass Spectrometry, UTTAC-74, 63-71, 2006. 査読無

〔学会発表〕(計 12件)

- <u>笹 公和</u>, AMSの南極氷床コア研究及 び地球環境科学分野への応用, UTTAC 研 究発表会「イオンビーム科学が拓く学際 研究」, 2009年3月16日, 筑波大学総 合研究B棟講義室0110.
- <u>長島泰夫</u>,筑波大学における AMS 研究の 歴史,第11回 AMS シンポジウム,2009 年1月14日-15日,名古屋大学野依記念 学術交流館.
- ③ <u>笹 公和</u>、高橋 努、戸崎裕貴、<u>末木啓介</u>、 玉理美智子、天野孝洋、大木俊征、大和 良広、<u>長島泰夫</u>、他 4 名. 筑波大学 AMS システムの現状 (2008 年度),第 11 回 AMS シンポジウム, 2009 年 1 月 14 日-15 日,名古屋大学野依記念学術交流館.
- ④ Tosaki, Y., <u>Tase, N., Sasa, K.,</u> Takahashi, T., <u>Nagashima, Y.</u>, Estimation of groundwater residence time using bomb-produced ³⁶Cl: a case study on spring waters from Mt. Fuji, Japan. The XXXVI IAH Congress, Toyama International Conference Center, Japan, 26 October - 1 November, 2008.
- (5) Michiko Tamari, <u>Keisuke Sueki</u>, Yuki Tosaki, Yuki Matsushi, Toshiyuki Oki, Shozo Mihara, Norikazu Kinoshita, Hiroshi Matsumura, Kotaro Bessho, Tsutomu Takahashi, <u>Kimikazu Sasa</u>, <u>Yasuo Nagashima</u>, Chemical procedure of sulfur reduction for ³⁶Cl-AMS: A case of soil samples, The 11th International Conference on Accelerator Mass Spectrometry (AMS11), Rome, Italy, 14th to 19th September, 2008.
- ⑥ <u>Kimikazu Sasa</u>, Tsutomu Takahashi, Yuki Tosaki, Michiko Tamari, <u>Keisuke Sueki</u>, Toshiyuki Oki, Shozo Mihara, Yoshihiro Yamato, <u>Yasuo Nagashima</u>, 他 4 名, Status and research programs of the

multi-nuclide AMS system at the University of Tsukuba, The 11th International Conference on Accelerator Mass Spectrometry (AMS11), Rome, Italy, 14th to 19th September, 2008.

- ⑦ 笹 公和、長島泰夫、高橋 努、<u>末木啓介、</u> 戸崎裕貴、玉理美智子、他8名,筑波大 学大型タンデム加速器を用いた加速器質 量分析 (AMS)装置の開発,第5回日本加 速器学会年会・第33回リニアック技術 研究会,2008年8月6-8日,広島大学(東 広島市中央公民館).
- ⑧ <u>笹</u>公和,高橋 努,戸崎裕貴,玉理美智 子,<u>末木啓介</u>,大木俊征,三原正三,<u>長</u> <u>島泰夫</u>,他4名,大型タンデム加速器を 用いた加速器質量分析法(AMS)による地 球環境科学研究,第10回応用加速器・関 連技術研究シンポジウム(ARTA2008),東 京工業大学百年記念館 フェライト会議 室,2008年6月12-13日.
- (9) <u>笹 公和</u>,高橋 努,戸崎裕貴,玉理美智子,<u>末木啓介</u>,大木俊征,三原正三,Y. Guan,松村万寿美,<u>長島泰夫</u>,他3名、 筑波大学 AMS システムの現状と利用研究 (2007 年度),第10回 AMS シンポジウム 一AMS 次の10年一,2008 年3月7日-3 月8日,東京大学.
- (1) <u>笹 公和</u>、石井 聡、大島 弘行、木村 博 美、高橋 努、田島 義一、大和 良広、小 松原 哲郎、工藤 博、<u>長島 泰夫</u>、筑波大 学タンデム加速器の現状,第 20 回タン デム加速器及びその周辺技術の研究会, 日本原子力研究開発機構 東海研究所, 2007 年 7 月 12 日-13 日.
- (1) <u>笹 公和</u>、石井 聡、大島 弘行、木村 博 美、高橋 努、田島 義一、大和 良広、小 松原 哲郎、<u>長島泰夫</u>. 筑波大学タンデム 加速器の現状、第 19 回タンデム加速器及 びその周辺技術の研究会. 2006.7.1-2, パレオラボ.
- (2) <u>笹 公和、長島泰夫</u>、関 李紀、高橋 努、 戸崎裕貴、<u>末木啓介</u>、他3名、加速器質 量分析法(AMS)による近年から過去数十 万年オーダーの年代測定、第8回応用加 速器・関連技術研究シンポジウム (ARTA2006), 2006.6.8-9, 東京工業大 学.

〔その他〕 ホームページ http://www.tac.tsukuba.ac.jp/~ams/

6. 研究組織

(1)研究代表者

笹 公和 (SASA KIMIKAZU)筑波大学・大学院数理物質科学研究科・講師研究者番号:20312796

(2)研究分担者
長島 泰夫 (NAGASHIMA YASUO)
筑波大学・名誉教授
研究者番号:60091914
末木 啓介 (SUEKI KEISUKE)
筑波大学・大学院数理物質科学研究科・准教授
研究者番号:90187609
田瀬 則雄 (TASE NORIO)
筑波大学・大学院生命環境科学研究科・教授
研究者番号:40133011

(3)研究協力者
高橋 努 (TAKAHASHI TSUTOMU)
筑波大学・研究基盤総合センター・技術専門
職員
何 民 (HE MING)
中国原子能科学研究院核物理研究所・教授