科学研究費補助金研究成果報告書

平成21年 4月30日現在

研究種目:基盤研究(B)
研究期間:2006~2008
課題番号:18360157
研究課題名(和文)
13nm 帯極紫外光および 0.15nm 軟X線伝送用高効率フレキシブル中空ファイバ
研究課題名(英文)
Flexible and highly-efficient hollow optical fiber for transmission of 13-nm extreme
ultraviolet light and 0.15nm soft X ray
研究代表者
松浦 祐司 (MATSUURA YUJI)
東北大学・大学院医工学研究科・教授
研究者番号:10241530

研究成果の概要:極紫外(EUV)光・軟X線という伝送路未開の領域を開拓し,可視-近赤外 領域で一般的に使用されているガラス光ファイバのように,柔軟かつ高効率な伝送路を実現す ることを目的とする.その方法として,EUV・軟X線の波長の全域をほぼ完璧に透過する唯一 の材料,「真空」をコアとする中空光ファイバを選び,その構成材料や構造などについて最適設 計を行うとともに,製造方法をあらたに開発した.また,開発した中空光ファイバを用いた新 機能を有するX線検査装置の試作・評価を行った.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006年度	5, 000, 000	0	5, 000, 000
2007年度	5, 100, 000	1, 530, 000	6, 630, 000
2008年度	4, 400, 000	1, 320, 000	5, 720, 000
年度			
年度			
総計	14, 500, 000	2, 850, 000	17, 350, 000

研究分野:光デバイス工学

科研費の分科・細目:電気電子工学 電子デバイス・電子機器 キーワード:中空ファイバ,真空紫外,軟X線,X線伝送,中空導波路,レーザ誘起プラズマ

1. 研究開始当初の背景

半導体リソグラフィー業界の急速な技術 開発の波に乗る形で,波長13nm帯の極紫外 (EUV)光を発生するレーザ誘起プラズマ光源 が各種提案され,開発が進んでいる.また,高 強度フェムト秒レーザの出現に伴い,その高 次高調波を利用したテーブルトップ軟X線源 の開発も国内外で盛んである.これらの波長 域の用途は,微細加工に限らず半導体材料・ 環境物質の分析,生体細胞の観察,蛋白質の 構造解析など多岐にわたっている.また,こ れまでは放射光などの大規模なシステムが 必要なため用途が限られていた領域であったが、高出力コヒーレント光源の登場により、 微細部分への光照射による材料改質、人体への照射によるガン治療等、新しい応用も次々 と考案されている.

このように急速に光源の開発が進んでい る EUV・軟 X 線領域ではあるが,良好な透明 性を示す材料が存在しないため,本領域に対 応する伝送路はほとんど未開発といえる.そ のため,EUV・軟 X 線光源を利用する応用 システムにおいては,光源から照射ターゲッ トへの導光は複数の鏡をもちいた空間伝送 に頼るしかない.特に,この領域では空気に よる吸収損失が問題となるため,光路すべて を真空化する必要があり,システムの小型化, 低コスト化が難しいのが現状である.もし, 可視 - 近赤外領域で用いられている光ファ イバのような柔軟かつ高効率な伝送路が実 現されれば,システム開発上の大きなハード ルが取り除かれることとなり,その意義はき わめて大きいといえる.

2. 研究の目的

本研究の主な目的は EUV・軟 X 線という 伝送路未開の領域を開拓し、可視-近赤外領 域で一般的に使用されているガラス光ファ イバのように、柔軟かつ高効率な伝送路を実 現することである. その手法として, EUV・ 軟X線の波長の全域をほぼ完璧に透過する唯 一の材料,「真空」をコアとする中空光ファ イバについての研究を行う.本研究で取り扱 う中空伝送路は, ガラスもしくは金属チュー ブなどの構造体の内面に金属や誘電体多層 膜などの反射層を形成した構造をしている. 幾何光学的に見れば、中空(真空)コア中の 光は反射層にきわめて浅い角度で入射(グレ ージング入射)し、反射を繰り返しながらコ ア中を伝搬するが,反射時の損失を低く抑え ることができれば低損失伝送が可能となる.

EUV・軟 X 線領域において高反射率を呈す る材料としては、まず各種の金属が考えられ るが、波長によって最適な金属材料を選択す る必要がある.また、金属表面は散乱損失を 低減するためにきわめて平滑でなければな らず、容易に実現することは難しい.そのた め、適切な金属材料の選択と平滑面の形成に ついて、理論的・実験的に検討する.また、 もうひとつの手法として内面に多層薄膜を 形成し、特定波長領域の反射率を増大させる 方法が考えられる.グレージング入射に対し て高反射率を呈する多層膜の設計および多 層膜を内装したファイバの製作を行うこと が本研究の目的である.

3.研究の方法

(1)EUV 光伝送用金属薄膜内装中空ファイバ 図1は本研究で取り扱う中空光ファイバの 構造図であり、図2はEUV 領域における各種 金属のグレージング入射(0.5°)に対する 反射率の計算値である.対象とする波長 5-20nmの領域では、モリブデンや銀が石英よ り高い反射率を示し、これらの金属で中空フ ァイバを構成すれば、石英ガラスキャピラリ よりはるかに高い伝送効率が得られること が期待される.

そこで,ほぼ理想的な平滑面をもつガラス チューブを母材として,その内面に金属薄膜 を形成する.その手法としては,銀について

は銀鏡反応を、モリブデンについては成膜が 難しいため、ほぼ同等の光学定数をもつルテ ニウムを選択し、MOCVD 法を用いる.金属膜 の表面粗さが問題となると考えられるが、現 在進行中の実験結果より、母材表面の前処理 や金属成膜時の条件最適化により粗さを低 減できることがわかってきており、これらの 手法により問題解決を図る.

次に製作したファイバについて伝送特性 の評価を行う.使用する波長に応じて適切な 波長フィルタを選択し、特定の波長域が得ら れ、その領域での波長特性を反射型分光器に よって測定する.金属材料による特性の違い や、ファイバの長さ、内径、またファイバの 曲げ状態が伝送効率に及ぼす影響について 調査する.

(2)軟X線伝送用金属薄膜内装中空ファイバ 各種イメージングや分析、がん治療などに 用いられる波長 0.5nm 以下の軟 X 線領域にお いては、物質の屈折率の実部が1を下回るた め、空気との境界面で減衰全反射が生じる. 図3に示すようにある臨界角より大きな角 度においては屈折率の虚部はゼロでないた め完全な全反射にはならないが、きわめて高 い反射率を呈する. この現象を利用して軟 X 線用中空伝送路を実現する.本研究において はイメージングや分析に広く用いられてい るX線管から発生する特性X線のうち一般的 な Cu の K α 線 (波長 0.15nm) を伝送対象と し、これまで使用してきた銀に加えて、新た にニッケルを成膜したファイバの製作につ いて検討し、試作したファイバについて評価 を行う.

図3 各種金属の反射率の入射角依存性

そこでガラスキャピラリ内面にメッキ法 により金薄膜を生成する.しかしガラス表面 への金の付着強度は一般に高くないことが 知られている.そこで十分な強度を得るため に、薄い銀の中間層を形成し、その表面上に ニッケル薄膜を形成することにより上記の 問題を解決する.

製作した中空ファイバにX線管と、シリコ ンドリフトディテクタとの組み合わせから なる系によって、その伝送特性の評価を行う. 内装した金属材料、ファイバの内面粗さ、内 径などの伝送効率への依存性を調査すると ともに、その伝送特性のエネルギー依存性に ついて評価を行う.

(3) 多層薄膜内装中空ファイバ

EUV・軟 X 線領域における高効率伝送路を 実現するもうひとつの方法として、中空コア 部分を多層薄膜で囲んだファイバを用いる ことがあげられる.多層薄膜の膜厚を利用波 長域においてブラッグ条件を満たすように 設計すればフォトニックバンドギャップに より、伝送エネルギーを中空コアに閉じ込め ることができる。

まず,ファイバ内で生じるグレージング入 射時に反射率を増強するための最適な多層 膜構造を幾何光学的手法および電磁界方程 式に基づく解析的手法により導く.

多層膜の設計および製作工程の詳細検討 を行い、まずは、可視光領域で機能するファ イバの試作・評価を行う.

(4)軟X線伝送用金属薄膜内装中空ファイバ の実用化検討

金属膜内装ファイバの製作および評価を 行い,金属膜生成時の成膜条件の最適化を行 うことにより表面粗さを低減し,ファイバの 更なる高効率化を行うとともに,より長尺な ファイバの製作について検討する.そして, 試作したファイバを用いて小型のX線蛍光 分析装置の試作を行う.最終的な装置の概念 図は図4に示すようなものであり、この装置 には柔軟な中空ファイバがプローブとして 取り付けられているため、これまで困難だっ た狭窄部の測定や微小部位の分析が可能と なるものである.

図4 分析装置イメージ図

4. 研究成果

(1) EUV 光伝送用金属薄膜内装中空ファイバ

平滑面をもつガラスチューブを母材とし て、その内面に金属薄膜を形成した.その手 法としては、銀については銀鏡反応を、ルテ ニウムについてはMOCVD法を用いた.図 5に示す、波長 13nm のレーザ誘起プラズマ EUV光源を構築し、それを用いてファイバ の特性評価を行った.

図5 EUV 伝送特性評価系

その結果,銀薄膜を形成したファイバ(内径1mm,長さ50cm)は、その製造条件を最適化し、生成した銀薄膜表面を平滑化することにより、石英キャピラリと比較して高い透過効率を示した.特に、その優位性はファイバを曲げた場合に顕著に現れ、銀薄膜の内装により、石英キャピラリのほぼ2倍の透過率が得られた.

ルテニウム成膜についてあらたにMOC VD法による金属膜形成法を開発し,内径1 mm,長さ10cmのファイバ製造に成功し たが,十分な膜厚が得られていないために, 損失低減の効果は確認できなかった.

(2) 軟 X 線伝送用金属薄膜内装中空ファイバ 軟 X 線を伝送するための金属膜内装ファ イバの製作および評価を行った.これまでの 理論計算結果から,蛍光X線分析に有効なエ ネルギー帯域をカバーするのに有効な,中空 ファイバに内装する金属材料として,ニッケ ルが優れていることがわかっており,無電界 メッキ法によるニッケル薄膜生成について 検討した.工程は前処理として脱脂,エッチ ング,触媒付与を行い,その後,新規に作製 した75℃で安定して加熱を行うためのウ ォーターバスを利用してメッキを行った.そ の際の,メッキ液の流速およびメッキ時間を 実験により最適化した結果,きわめて平滑で かつ十分な厚さをもつニッケル薄膜の生成 に成功した.

図6 X線用ファイバ評価装置

製作したファイバに対して,図6に示すような,X線管を光源とし、シリコンドリフトディテクタ(SDD)を検出器とする系で評価を行った.ファイバはステンレスパイプ内にあり、すべての光路は真空となっている.

ファイバを透過した X 線のパワースペクト ルを図7に示す.従来の銀薄膜を内装したフ ァイバではエネルギー6KeV 以上の領域で石 英キャピラリを若干上回っている程度であ るが,ニッケルを内装したファイバでは4KeV 以上の広い領域で大幅に石英キャピラリの 透過パワーを上回っており,ニッケル内装の 効果を明確に確かめることができた.石英キ ャピラリと比較すると透過パワーは低エネ ルギー領域で2-4倍程度,高エネルギー領 域では4倍以上大きくなっていることがわ かった. (3) 多層薄膜内装中空ファイバ

中空コア部分を多層薄膜で囲んだファイ バについて検討する前段階として、まずは可 視から近赤外の波長域で機能する石英ガラ スをコアとするファイバについて設計・試作 を行った.石英ガラスコアの外側に石英より 屈折率が高いシリコンと石英の多層膜を形 成し、そのブラッグ反射により低屈折率コア に光を閉じ込めるブラッグファイバと呼ば れるもので、中空コアを用いた場合も同様の 効果が得られると考えられる.

多層薄膜の膜厚を利用波長域においてブ ラッグ条件を満たすように設計し、それによ り生じるフォトニックバンドギャップによ り、伝送エネルギーを中空コアに閉じ込める ような設計を行った.次に、スパッタリング 法をもちいて石英コアの周囲に石英とシリ コンの交互多層膜を形成し、ブラッグファイ バを試作した.その伝送特性の評価を行った ところ、設計通りのバンドギャップ特性が得 られることを確認した.

次に本構造のファイバを製作する方法と して、ガラスチューブの外面にスパッタリン グ法により多層薄膜を形成した後に、弗酸に よってチューブを溶解・除去するという手法 を用いることについて検討した.

(4)軟X線伝送用金属薄膜内装中空ファイバの実用化検討

上で開発した X 線伝送用ニッケル中空ファ イバを用いて X 線蛍光分析システムを構成し, その有効性の検証を行った.構築した系は図 8に示すようなもので, X 線管および検出器 の両方に内径 1mm の中空ファイバが取り付け られている.これによりサンプル上の微小部 位の分析が可能となる.

まずは基準サンプルとして亜鉛板をもち いて評価を行った結果,ニッケル中空ファイ バを用いることにより石英キャピラリを用 いた場合の1.5倍程度の高感度での検出が 可能であった.

次にプラスチック中の有害物検出を目的 として、エポキシ樹脂中に亜鉛粉末を混入し たサンプルの測定を行った.その結果,0.1% 程度の濃度の検出が可能であったが、目標と される ppm オーダの検出のためにはファイバ および光学系を最適化し、系全体の効率を上 昇させる必要があることがわかった.

図8 ファイバを用いた X 線蛍光分析装置

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計9件)

- L. Ma, <u>Y. Matsuura</u>, "Bragg fiber taper for subwavelength beam generation," J. Lightwave Technol., vol. 26, no. 24, pp. 3847-3852 (2008).査読有
- Y. Matsuura, E. Takeda, "Hollow optical fibers loaded with an inner dielectric film for terahertz broadband spectroscopy," J. Opt. Soc. Am. B, vol. 25, no. 12, pp. 1949-1954 (2008). 査読有
- K. Iwai, M. Miyagi, Y. Shi, X. Zhu, Y. <u>Matsuura</u>, "Infrared hollow fiber with a vitreous film as the dielectric inner coating layer," Opt. Lett., vol. 32, no. 23, pp. 3420-3422 (2008). 査読有
- Y. Matsuura, A. Tshuchiuchi, H. Noguchi, M. Miyagi, "Hollow fiber optics with improved durability for high-peak-power pulses of Q-switched Nd:YAG lasers," Appl. Opt., vol. 46, no. 8, pp. 1279-1282 (2007). 査読有
- 5. S. Narita, <u>Y. Matsuura</u>, M. Miyagi, "Tapered hollow waveguide for focusing infrared laser beams," Opt. Lett., vol. 32, no. 8, pp. 930-932 (2007). 査読有
- R. Kasahara, <u>Y. Matsuura</u>, T. Katagiri, M. Miyagi, "Transmission properties of infrared hollow fibers produced by drawing a glass-tube preform," Opt. Eng., vol. 46, no. 2, pp. 025001-1-025001-5 (2007). 査読有
- T. Katagiri, <u>Y. Matsuura</u>, M. Miyagi, "All-solid single-mode Bragg fibers for compact fiber devices," J. Lightwave Technol., vol. 24, no. 11, pp. 4314-4318 (2006). 査読有
- 8. T. Watanabe, <u>Y. Matsuura</u>, "Side-Firing Sealing Caps for Hollow Optical Fibers," Lasers in Surgery and Medicine, vol. 38, pp. 792-797 (2006). 査読有
- O. Yilmaz, M. Miyagi, <u>Y. Matsuura</u>, "Bundled hollow optical fibers for transmission of high-peak-power Q-switched Nd:YAG laser pulses," Appl. Opt., vol. 45, no. 27, pp. 7174-7178 (2006). 査読有

〔学会発表〕(計7件)

- 前田 真吾,<u>松浦 祐司</u>, "軟X線伝送用 金属中空ファイバを用いた蛍光X線分 析,"電子情報通信学会 2009 年総合大会 (2009 年 3 月 24 日,松山) B-13-1
- 前田 真吾,<u>松浦 祐司</u>, "軟X線伝送用 金属中空ファイバ ー曲がり損失低減の

検討-," 電子情報通信学会通信ソサイ エティ大会 (2008 年 9 月 13 日, 川崎) B-13-27

- 前田 真吾, 松浦 祐司, "軟X線スポット照射用金属中空ファイバの高効率化," レーザー学会学術講演会第 28 回年次大会(2008年1月29日,名古屋) 1pIV-7
- 前田 真吾,<u>松浦 祐司</u>, "軟X線伝送用 金属中空ファイバ,"電子情報通信学会 通信ソサイエティ大会 (2007 年 9 月 14 日,鳥取) B-13-15
- 5. 吉田 貴則,<u>松浦 祐司</u>, "EUV光用ルテ ニウム中空ファイバの試作,"第54回応 用物理学関係連合講演会 (2007年3月27 日,相模原) 27p-ZL-7
- <u>Y. Matsuura</u>, "UV, x-ray, and Raman waveguides for medical treatments," Advaced study institute on optical waveguide sensing and imaging (Oct.19 2006, Gatineau, Canada).
- 吉田 貴則, <u>松浦 祐司</u>, "13nm帯EUV 光用金属中空ファイバ -金属の選択と 試作-," 第 67 回応用物理学会学術講演 会(2006 年 8 月 30 日, 滋賀) 30a-ZB-2

6. 研究組織

 (1)研究代表者 松浦 祐司(MATSUURA YUJI) 東北大学・大学院医工学研究科・教授 研究者番号:10241530

(2)研究分担者

岩井 克全(IWAI KATSUMASA)
国立仙台電波工業高等専門学校
・情報通信工学科・助教
研究者番号:10361130