科学研究費補助金研究成果報告書

平成 21 年 3 月 31 日現在

研究種目:基盤研究(B) 研究期間:2006~2008 課題番号:18360439 研究課題名(和文)ブランケット増殖材のトリチウム保持脱離挙動 研究課題名(英文)TRITIUM RETENTION AND DESORPTION BEHAVIOR IN BREEDING MATERIAL OF BLANKET

研究代表者

日野 友明(HINO TOMOAKI) 北海道大学・大学院工学研究科・教授 研究者番号:30109491

研究成果の概要:

核融合炉の実現のため、最重要課題はトリチウム増殖ブランケットの開発である。しかし、 トリチウム増殖材で生成するトリチウムが運転条件下で、どの程度保持され、どの程度残留する のか評価されていない。本研究では、トリチウム増殖材であるリチウム・タイタネートに重水素 イオンを照射して重水素を捕捉させ、捕捉された重水素がどのような温度条件で脱離するかを測 定した。この結果から、生成されるトリチウムがどの程度速やかに回収されるか、またどの程度 インベントリーとして残るかを明らかにした。

リチウム・タイタネートに室温から773Kまでの照射温度で1.7keV D⁺を照射して。照射後、昇温脱離分析でD保持量とDの脱離挙動を調べた。DはLiにより捕捉され、その濃度はD/Li =0.5となった。D保持量は照射温度とともに減少し、773Kでは保持量はゼロになった。

これらの結果から、ITERのテスト・ブランケット・モジュール(TBM)について、トリチ ウム・インベントリーを見積った。トリチウムが残存する低温度領域が存在するため、少なくて も数10gのトリチウム・インベントリーがあることから、ITERの炉内トリチウム・インベント リーを増加させる可能性があることが分った。トリチウム・インベントリーを減らすためには、 773K以下の領域を大きく減らす設計が必要であることを指摘した。

本研究で得られた結果から、固体ブランケットからのトリチウム回収条件とトリチウム・イ ンベントリーが明らかにできた。今回の実験では、フェライト鋼固体ブランケットを対象とした が、この手法はシリコンカーバイド複合材料固体ブランケット、バナジウム合金などの液体ブラ ンケットに対しても適用でき、核融合炉ブランケットの設計手法の確立に大きく貢献できた。

交付額

(金額単位:円)

			(亚银平匹,1)
	直接経費	間接経費	合 計
2006 年度	5, 500, 000	1, 650, 000	7, 150, 000
2007 年度	2, 700, 000	810, 000	3, 510, 000
2008 年度	1, 500, 000	450, 000	1, 950, 000
年度			
年度			
総計	9, 700, 000	2, 910, 000	12, 610, 000

研究分野:工学

科研費の分科・細目:総合工学・核融合学

キーワード:核融合炉、ブランケット、トリチウム増殖材料、トリチウム保持・脱離、トリチウ ム回収、トリチウム・インベントリー

1. 研究開始当初の背景

核融合炉のブランケットは、①トリチウ ム生成、②熱除去と発電、③中性子及びガン マ線から超伝導コイルの遮蔽の役割を担う。 国際熱核融合実験炉(ITER)では、発電実証 に向けて、トリチウムを増殖する機能を有す るテスト・ブランケット・モジュール (TBM) を設置する。日本が提案している固体増殖・ 水冷却方式の TBM では、トリチウム増殖材と してリチウム・タイタネート (Li₂TiO₃) を使 用する。ブランケット中に装荷された LigTiOa には、プラズマから中性子が入射し、Li と中 性子の核反応によりトリチウム(T)が増殖さ れる。また,核反応の反応熱により増殖材中 には温度分布(573 K-1173 K)が存在し、こ の温度分布においてトリチウムは熱脱離で放 出され、すみやかに回収される必要がある。 しかしながら、生成されたトリチウムがどの 程度回収されるか、どの程度トリチウム・イ ンベントリーとして残留するのか分かってい ない。どのような温度条件でトリチウムが脱 離するかを解明して、速やかにトリチウムを 回収し、トリチウム・インベントリーが少な いブランケットの設計が必要となる。

2. 研究の目的

トリチウム回収技術の確立及びトリチウ ム・インベントリーの評価のため、Li₂TiO₃中 に生成されたトリチウムの熱脱離挙動を調べ ることが不可欠である。本研究では、Li₂TiO₃ 中に生成されるトリチウムの熱脱離挙動を模 擬するため、Li₂TiO₃ペブルの温度を変化させ て重水素イオンを照射し、重水素の保持脱離 挙動を昇温脱離分析 (TDS) により調べた。重 水素の捕捉状態はトリチウムと殆ど同じとさ れているので、この実験結果からブランケッ トで生成されるトリチウムの捕捉状態及び脱 離挙動が分かる。また、トリチウム増殖材の 温度下で残留トリチウム量が分かる。

これらの結果を基に、速やかにトリチウ ム回収ができ、トリチウム・インベントリー が少ない温度条件を把握する。

3.研究の方法

直径約2 mmのLi₂TiO₃ペブルを1回の照 射実験につき18粒用いて、重水素イオンを照 射した。照射前に,これらのLi₂TiO₃ペブルを 973 K にて1時間真空加熱し、脱ガス処理を 行った。脱ガス後,Fig.1 に示してある ECR イオン源装置を用いて、Li₂TiO₃ペブルに重水 素イオン(1.7keV,D⁺)を5×10¹⁸ D/cm²照 射した。照射の際、ペブル温度を室温(RT)、 473 K、573 K、673 K、773 K とした。そ の後、昇温脱離分析装置(Fig.2)にて、室温 から973 K まで昇温速度10 K/min で昇温し、 973 K において1時間保持した。昇温中、 Li₂TiO₃ペブルから脱離する重水素を含むガス を四重極質量分析計により定量的に測定した。

また、重水素照射量を 7×10^{18} D/cm²ま で変化させて室温下で照射し、D保持量のフ ルエンス依存性を求めた。さらに、電子ビー ム蒸着でステンレス鋼にT i 蒸着した試料、 及びL i を蒸着した試料を作製し、Li₂TiO₃と 同じ条件(RT、5 × 10¹⁸ D/cm²)で照射し て、Dの保持・脱離挙動を比較検討した。

重水素照射されると、Li₂TiO₃ペブル表面 の結合状態や組成が変化し、重水素保持状態 や脱離挙動に影響を与えると考えられる。そ のため、照射前後のLi₂TiO₃ペブル表面の表面 形態を走査型電子顕微鏡 (SEM) 及び表面原子 組成比をオージェ電子分光法 (AES) により分析した。

Fig.1 ECR deuterium ion source.

4. 研究成果

(1)実験結果

Fig.3にRT、573 K 及び 773K で照射し た後、TDS で求めたDを含むガスの脱離ス ペクトルを示してある。Li₂TiO₃ペブルに保 持された重水素はHD、D₂、HDO、D₂Oの形 で脱離し、照射温度に関係なくHDO が最も 多く脱離した。

Fig. 2 TDS apparatus.

Fig. 4にLi₂TiO₃ペブルの重水素を含むガ スの脱離量の照射温度依存性を示す。重水 素を含むガスから重水素の総量を求め、こ の重水素保持量をLi₂TiO₃ペブルの照射温 度に対すてプロットしたのがFig. 5 である。 図中破線の温度領域は TBM の増殖材温度領 域である。重水素保持量は照射温度 473 K 以下でほぼ一定であり、それ以上の領域で は照射温度の上昇とともに減少した。照射 温度 773 K の場合、重水素を含むガスの脱 離はほぼ見られず、照射した重水素は照射 中に脱離したとみなせる。従って、Li₂TiO₃ ペブル中に生成されたトリチウムは 773 K 以上の温度領域ならば、完全に脱離するこ とが分かった。

また, Fig. 6 に各処理後の Li₂TiO₃ペブル 表面形態の SEM 像を示す。未処理や脱ガス処 理後と比較して,重水素イオン照射後では, 表面の凹凸が少なくなった。 Table 1 に AES により分析した Li₂TiO₃ペブル表面原子組成 比の結果を示す。照射により Li の原子組成比 が小さくなり, Ti と 0 の組成比が大きくなっ た。重水素イオン照射により, Li₂TiO₃ペブル 表面の Li がスパッタリングされ,その欠陥部 に大部分の重水素が捕捉されと考えられる。

Fig.4 Amounts of gases containing deuterium desorbed from Li_2TiO_3 pebbles as a function of irradiation temperature.

Fig.5 Amounts of retained deuterium in Li_2TiO_3 pebbles as a function of irradiation temperature.

Fig.6 SEM images of Li₂TiO₃ pebble surface. (a) as-received, (b) degassed and (c) D-irradiated.

Table 1 Atomic	composition	of top	surface	of
Li ₂ TiO ₃ pebble.				

Element [at.%]	Li	С	0	Ti
As-received	52	23	14	11
Degassed	58	0	35	7
D-irradiated	10	10	60	20

また、イオン照射量を変えて、重水素保 持量のイオン・フルエンス依存性を求めた。 Fig.7 にRTで照射したときの重水素保持量 を示してある。1 × 10¹⁸ D/cm² のフルエンス で保持量は飽和することが分かった。重水素 はリチウムやチタンに捕捉されるが、どのよ うな割合で捕捉されるかが分かっていないの で、チタン及びリチウムを

を蒸着した試料に対しても、リチウム・タイ タネートと同じ条件下で重水素イオン照射を 行った。重水素の脱離挙動はリチウムに類似 しており、重水素の殆どはリチウムに捕捉さ れることが分かった。重水素の保持量が分か っているので、重水素濃度は原子比で最大 D/Li = 0.5 となることを見出した。

照射温度に対する重水素残留割合は Fig.5 であり、かつ重水素の濃度が分かって いるので、ブランケットのトリチウム増殖材 の温度分布が与えられなら、トリチウム・イ ンベントリーを求めることができる。Fig.5 に示してある温度分布では、リチウム・タイ タネートの量を 70kg とするなら、トリチウ ム・インベントリーは数 10g となる。もし、 ブランケット数が多ければブランケット全体 のトリチウム・インベントリーは数 100g とな り、許容量を超えることになる。従って、ト リチウム・インベントリーを減少させるべく、 設計段階から温度分布を高める必要がある。

(2) 結果のまとめ

トリチウム増殖材で生成するトリチウム が運転条件下で、どの程度保持され、どの程 度残留するのか評価されていない。本研究で は、トリチウム増殖材であるリチウム・タイ タネートに重水素イオンを照射して重水素を 捕捉させ、捕捉された重水素がどのような温 度条件で脱離するかを測定した。この結果か ら、トリチウムの速やかな回収条件、及びイ ンベントリーを明らかにした。

D は Li により捕捉され、その濃度は D/Li=0.5 となった。D 保持量は照射温度とと もに減少し、773K では保持量はゼロにな った。

これらの結果から、ITER のTBMにつ いて、トリチウム・インベントリーを見積っ た。トリチウムが残存する低温度領域が存在 するため、少なくても数10gのトリチウム・ インベントリーがある。ITER の炉内トリチ ウム・インベントリーを増加させる可能性が あることが分った。トリチウム・インベント リーを減らすためには、773K以下の領域 を大きく減らす設計が必要であることを指摘 した。

今回の実験では、固体ブランケットを対 象としたが、この手法はシリコンカーバイド 複合材料固体ブランケット、バナジウム合金 などの液体ブランケットに対しても適用でき る。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

H. Shibata, Y. Nobuta, Y.Yamauchi, <u>T. Hino</u>, Deuterium retention and desorption behavior of Li₂TiO₃ after

deuterium ion irradiations with different temperatures, To appear in Journal of Plasma and Fusion Research (2009). 查読有

② <u>T.Hino</u>, Deuterium retention and desorption behavior of tritium breeder, lithium titanate, Proc. of China-Japan Symposium on PWI/PFC and Fusion Technologies (NIFS Report, NIFS-PROC-76) pp.42-45, Yellow Mountain, Oct.(2009). 査読無 ③<u>T. Hino</u>, D. Sato, Y. Yamauchi, H. Tanigawa, M. Akiba, S. Suzuki, Deuterium retention and desorption behavior of lithium titanate, Fusion Engineering and Design, 83, 1173–1175, 発表年(2008). 查読有

〔学会発表〕(計3件)

① <u>T.Hino</u>, Deuterium retention and desorption behavior of tritium breeder, lithium titanate, China-Japan Symposium on PWI/PFC and Fusion Technologies, Yellow Mountain International Hotel, Yellow Mountain, China, Oct.27-29 (2009).

2 H. Shibata, Y. Nobuta, Y.Yamauchi,

<u>T. Hino</u>, Deuterium retention and desorption behavior of Li_2TiO_3 after deuterium ion irradiations with different temperatures, International Congress on Plasma Physics, Fukuoka International Congress Center, Fukuoka, Sept.8-12 (2009).

<u>③ T. Hino</u>, D. Sato, Y. Yamauchi,

H. Tanigawa, M. Akiba, S. Suzuki, Deuterium retention and desorption behavior of lithium titanate (Oral), 8th International Symposium on Fusion Nuclear Technology, Heidelberg Convention Center, Heidelberg, Germany Oct. 5 (2007).

6. 研究組織

(1)研究代表者
日野 友明(HINO TOMOAKI)
北海道大学・大学院工学研究科・教授
研究者番号: 30109491

(2)研究分担者 なし

(3)連携研究者 なし