科学研究費補助金研究成果報告書

平成21年 5月31日現在

研究種目:基盤研究	(B)			
研究期間:2006~2008	8			
課題番号:18370	0 4 8			
研究課題名(和文)	新型の血管内皮増殖因子(VEGF-F)の構造と機能の解明			
研究課題名(英文)	Studies on the structure and function of new vascular endothelial			
	growth factors			
研究代表者				
森田 隆司(MORITA TAKASHI)				
明治薬科大学・薬学部・教授				
研究者番号:901	28108			

研究成果の概要:申請者は、VEGFの分子作用機序の解明を目標に、ヘビ毒腺に発現する毒型VEGF (VEGF-F)に焦点を当て、生化学的および生物学的な解析を行った。その結果、毒ヘビに発現す る毒型VEGFは機能的に重要な領域の構造(受容体結合ループおよびC末端領域)を多様化させ ることで、その機能を多様化していることを明らかにした。次に、vamminをはじめとする異な るリガンド特性を持つVEGFを用いた超微形態学的解析より、VEGFの血管透過性の亢進に伴う血 管壁の超微構造変化(VVOおよびfenestrae形成)は、リガンドの受容体選択性によって異なる ことを示した。さらに、種々のヘビ毒よりVEGFとは異なる新しいVEGF受容体結合タンパク質、 KDR-bp(Lys⁴⁹-PLA₂)を同定した。VEGFの血管透過性亢進作用は癌性浮腫や腹水、炎症細胞・癌 細胞浸潤の原因となることから、本研究の成果は、それら病態機序の解明および分子治療に貢 献することと期待している。さらに、KDR-bpの発見はKDRの新たな機能探索ならびにVEGFおよび VEGF受容体分子標的物質の開発研究において有用なツールとなると考える。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006年度	4, 400, 000	1, 320, 000	5, 720, 000
2007年度	5, 200, 000	1, 560, 000	6, 760, 000
2008年度	5, 200, 000	1, 560, 000	6, 760, 000
総計	14, 800, 000	4, 440, 000	19, 240, 000

研究分野: 生物学

科研費の分科・細目: 生物科学・構造生物化学

キーワード: 血管内皮増殖因子・VEGF・血管透過性・生体生命情報学・分子認識・蛋白質・ ゲノム・生体分子

1. 研究開始当初の背景

血管内皮増殖因子(Vascular endothelial growth factor; VEGF-A₁₆₅)は165アミノ酸残 基から成る分子量約45,000のホモ二量体タ ンパク質であり、血管新生作用や血管透過性 亢進作用など多彩な生物活性を示す。その作 用は内皮細胞膜上の受容体Flt-1 (VEGF受容 体1) およびKDR (VEGF受容体2) を介して発 現する。当研究室ではヘビ毒より2種の新規 なVEGF様タンパク質 (vamminおよびVR-1 と 命名)を見出している。VamminおよびVR-1 は KDRのみに特異的に結合しVEGF-A₁₆₅に比べ強 力な生物活性を示すことから、7番目のVEGF サブタイプとしてVEGF-Fと分類されている。 近年、種々の組織細胞生物学的解析および遺 伝子改変動物を用いた解析よりVEGFの多様な 生理機能が明らかにされてきたが、タンパク 質レベルに焦点を当てた解析は少なく、リガ ンドー受容体間の分子相互作用や生物活性の 発現メカニズムも未だ不明な点が多い。

我々は VEGF の構造機能相関について明ら かにする目的で、(1) VEGF-F の構造および機 能の多様性、(2)機能発現メカニズムが不明な VEGF の血管透過性亢進活性について、生理的 な VEGF とは異なるリガンド特性を持つ VEGF-Fを用いて、生物学的および超微形態学 的に解析、(3)抗血管病薬の創薬シーズを見つ けるため、種々ヘビ毒中より VEGF 受容体のア ンタゴニスト分子の探索、の3点について遂 行する。

2. 研究の目的

新型の VEGF-F の構造と機能相関を解明することで、VEGF 分子と機能の多様性及び VEGF の強力な生物活性の発現メカニズムを明らかにする。

3. 研究の方法

(1) VEGF-Fの細胞生物学的機能解析

VEGF-FはVEGF-A (VEGF165)と同程度の濃度 で血管内皮細胞の増殖を惹起するが(EC50 = 100 pM)、VEGF-Aに比べ約2倍の最大増殖率 を示す。この強力な生物活性は*in vivo*でも 観察され、VEGF-Aに比べ強力な血圧降下作用 を有している。VEGF-Fの強力な生物活性の発 現機序を同定する目的で、培養細胞系を用い てVEGF-Fの細胞内シグナル伝達機構につい てVEGF-Aと比較しながら検討した。また VEGF-Aには細胞増殖活性の他に細胞遊走作 用・血管透過性亢進作用があることが知られ ているので、これらの生物活性に対しても定 量的に比較検討を行った。

(2) 新たなVEGF様分子の探索・同定

ごく最近、他の研究グループから VEGFR-2 だけでなく VEGFR-1 にも結合する新しいへ ビ毒 VEGF が同定された*。ヘビ毒タンパク 質の加速進化と多様性を考慮すると**、さ らに異なる受容体選択性および生物活性を 持った VEGF様分子が含まれていると期待で きる。そこで新たな VEGF様分子の同定を目 的とし、免疫学的および遺伝子工学的手法 を用いて各種ヘビ毒を用いスクリーニング した。現在、抗 VEGF-F 抗体を使ったスクリ ーニングで予備的な知見を得ている。

*Takahashi, T. *et al. J. Biol. Chem.* **279**, 46304-46314 (2005)

Ogawa, T. *et al. Proc. Natl. Acad. Sci. U.S.A.* **89, 8557-8561 (1992) <u>(3) 血管新生系に作用する新規な毒素成分</u>の探索

VEGFR-2(KDR)は、血管新生・血管形成 において中心的な役割を果たす。当教室で 見出した VEGF-F は VEGFR-2のみを活性化す る初めての毒素タンパク質である。ヘビ毒 には同一の生体分子を標的とするアクチベ ータおよびインヒビター分子が含まれるこ とがあることから、種々のヘビ毒に VEGFR-2 に作用する新たな毒素成分を探索した。そ の結果、つい最近アメリカヌママムシ毒中 に新たな KDR 結合タンパク質を同定した。 同様の作用を示すタンパク質は他のヘビ毒 にも含まれている可能性を考え、さらにス クリーニングを行い単離・構造決定した。

(4) VEGF-Fの高いレセプター選択性に関する構造生物学的研究

VEGF-FはVEGFR-2にのみ特異的に結合す るリガンドである。我々は結晶構造解析から、VEGF-FはVEGF-Aと比べてレセプター結 合ループの構造と表面電荷が大きく異なっ ていることを明らかにしている。VEGF-Fの 高いレセプター選択性が、これらの構造上 の差異に起因することを明らかにするため、 VEGF-Aの遺伝子組換え体を作成し、そのレ セプター結合性について検討した。

(5) VEGF-FのC末端へパリン結合領域の新た
 な機能の探索

VEGF-A (VEGF165)のC末端には、55アミ ノ酸残基で構成されるヘパリン結合領域が 存在する(Keyt, B.A. et al. J. Biol. Chem. 271, 7788-7795, 1996; Fairbrother, W.J. et al. Structure 6, 637-648, 1998), -方、VEGF-FのC末端領域は16-17アミノ酸 残基と短い。つい最近、我々は合成ペプチ ドを用いた検討から VEGF-FのC 末端領域は VEGF165 と同様にヘパリン結合領域として 機能し、その生物活性に関与していること を明らかにした。また、VEGF-FのC末端ペ プチドは VEGF165 の生物活性(細胞増殖お よび血圧降下作用)を抑制することから、 VEGF165 が結合するヘパリンと同様のヘパ リン構造を認識していると考えられる。し かし、一次構造の大きな違いとヘビ毒タン パク質の加速進化を考えると、単にヘパリ ン結合領域としてのみ機能しているとは考 えにくい。そこで、VEGF-AのC末端へパリ ン結合領域をVEGF-FのC末端領域と置換し た組換えタンパク質を調製し、その生物活 性および生化学的性質について検討した。

(6) 受容体選択性・親和性の異なるVEGFの 生物活性の評価

VEGFは、それぞれ異なる受容体選択性・親

和性を示すことで多様な生理活性を発現す る。しかし内因性のサブタイプの生理活性を 比較検討しても、これまでの報告以上の情報 を得ることは出来ない。ヘビ毒には哺乳動物 には見られない受容体結合性を示すVEGFが 含まれていることから、これらの分子の生物 活性を比較することで、それぞれの受容体の 機能について(受容体同士のクロストークを 含めて)新たな情報を得ることが出来る。こ のような観点から、得られたVEGFの生化学的 性質およびいくつかの生物活性について哺 乳動物由来のVEGFと比較検討した。

4. 研究成果

(1) 組織型および毒型VEGFの比較生化学的解析

種々のヘビ毒タンパク質はしばしば、生物 活性に重要な領域を選択的に変化させること で多様な機能を獲得することが知られている。 そこで我々は、VEGF-F(毒型 VEGF)の分子多 様性を明らかにするため、毒ヘビに発現する 種々の組織型VEGF(ヘビVEGF-A)および毒型

図 1. 組織型および毒型 VEGF の分子多様性

毒型 VEGF-F のカッコ内のアミノ酸残基番号は、相対する 組織型 VEGF-A の残基番号を示す。多様化領域を点線四角で囲んだ (B)。 VHD; VEGF ホモロジードメイン, L1~3; ループ1~3

図 2. 和職交合よび事金 VEOF の方子来 (数) (2) パーヤー 本研究によりクローニングした 7 つの VEGF 分子を下線で示す。 分子系統樹は VEGF ホモロジードメインの一次構造を基に作成した。 * 免疫沈降解析結果より ** 結合アッセイより結合親和性を算出した。 R1; Flic1, R2; KDR, R3; Flic4, NP1; ニューロビリン-1 ー; 結合しない、+~++; 結合する

VEGF (VEGF-F) の配列を決定した。それらを

比較した結果、組織型 VEGF の構造は互いに高 く保存されていたのに対し(>94%)、毒型 VEGF は多様性に富んでおり、特に受容体結合ルー プ1とループ3およびC末端の補助因子と結 合すると予測される領域が最も多様化してい た(図1)。毒ヘビ由来の組織型および毒型 VEGF を機能的および系統発生的に分類する と、毒型 VEGF は組織型とは独立した進化を遂 げたと予測された。また、毒型 VEGF は少なく とも3群に分けることができることが分かっ た(図2)。以上の結果から、ヘビ毒腺に発現 する毒型 VEGF (VEGF-F) は機能的に特に重要 な領域の構造を変化させることで、その機能 を多様化していると推定した。

(2) VEGFの血管透過性亢進活性の超微形態学的解析

VEGFの血管透過性亢進作用は血管形成作用 とは独立して引き起こされることが知られて いる。その作用はKDRを介すると考えられてい るが、幾つかの相反する報告もあり、そのメ カニズムは未だ明確ではない。我々は受容体 選択性の異なる 3 種のVEGF (VEGF-A₁₆₅、 placenta growth factor-1 (PlGF-1), vammin) を用い、生理学および超微形態学の両面から VEGFの血管透過性亢進作用の解析を行った。 Milesアッセイにより血管内から血管外組織 への色素漏出量を測定した結果、VEGF-A₁₆₅お よびvamminは色素漏出を呈したのに対し、 Flt-1 のみに結合するPlGF-1 は色素漏出を呈 さなかった (図 3A)。また、vamminはVEGF-A₁₆₅ よりも強力な色素漏出を引き起こすことが分 かった (図 3A)。

図3. VEGFによる色素温出作用および毛細血管量超微構造変化 A. Miles アッセイによるサンブル皮内投与10分後の色素漏出量を示す。*p-0.005 B-D,毛細血管の透過電子顕微鏡像。有窓構造(tenestrae)を矢印(*)、VVOを矢頭(*)で示す。拡大 領域を四角で囲む。es;内皮細胞,p;周皮細胞,n;核bar:1mm(全体写真)および200m(拡大写真)

VEGF は、毛細血管壁にその血管透過性を亢 進させると予想される小胞-空胞オルガネラ (Vesiculo- vacuole organelle; VVO: 内皮細 胞内に多数生じる小孔)と有窓構造 (fenestrae: 径50-80 nmの内皮細胞膜に開い た穴)の2種の超微構造形成を引き起こすこ とが知られている(図4)。

VEGF-A₁₆₅およびvamminにより惹起される超

微構造変化を比較したところ、VEGF-A₁₆₅は、 ほぼ同程度の頻度でVV0とfenestraeを形成し たのに対し (35% および 24%)、vamminはVVO に比べfenestraeを優位に形成させた(10% および 53%) (図 3*B-D*)。現在までにVEGF-A₁₆₅の 超微形態学的解析より、VV0の出現頻度と fenestraeの出現頻度は反比例することから、 VVOからfenestraeが形成される機序がすでに 提唱されている。そこで、vamminによる超微 構造変化がVEGF-A165に比べ短時間で生じるた めにfenestrae形成が優位に観察された可能 性を考え、より短時間の超微構造変化を捉え るため皮内投与後の暴露時間を10分から3 分に短縮して同様の実験を行った。その結果、 10 分間暴露時と同様にvamminはfenestrae形 成のみを優先的に引き起こした(7% および 16%)。以上の結果から、vamminはfenestrae 形成を優位に惹起すること、またWVOおよび fenestraeは異なる機序により形成されると 推論した。Fenestrae形成を優位に誘導する vamminがVEGF-A₁₆₅に比べ色素漏出作用が高い ことを考えると、fenestraeはVEGFの血管透過 性亢進作用においてより機能的な超微構造で あると考察した。興味深いことに、超微構造 変化はFlt-1 にのみ結合するPlGF-1 刺激下に おいても引き起こされたが、色素漏出は全く 観察されなかった。したがって、VEGFの色素 漏出作用と超微構造変化は異なる機序により 引き起こされると考えた。

<u>(3) VEGF受容体結合タンパク質KDR-bpの分子</u> 特性

ヘビ毒には生体分子の特異的なアクチベー ターやインヒビターが含まれていることが知 られている。VEGFのアンタゴニストは抗血管 病治療薬のシードとなりうることから、我々 は、ヘビ毒よりVEGF-Fとは異なるVEGF受容体 結合分子の探索を試みた。スクリーニングの 結果、アメリカヌママムシ毒より新しいKDR 結合タンパク質を見出し、KDR-binding protein(KDR-bpと略)と命名した。その一次 構造を解析した結果、KDR-bpは不活性型のホ スホリパーゼA₂: Lys⁴⁹- PLA₂ファミリーに分 類されるタンパク質であった。ヘビ毒に含ま れるLvs⁴⁹-PLA。は、PLA。活性の代わりに強力な 筋壊死活性を示すPLA。ホモログ分子として報 告されているが、その分子機序は不明である。 種々の増殖因子受容体を用いたBiacore相互 作用解析の結果、KDR-bpはKDRおよびFlt-1の 細胞外ドメインに結合性を示したが、相同な 構造を持つ他の増殖因子受容体であるPDGF受 容体やFGF受容体には結合しなかった。KDR-bp とKDRの結合はVEGF-A₁₆₅によって競合的に阻 害され、またKDR-bpはVEGF-A₁₆₅のヒト臍帯静 脈内皮細胞の増殖活性を阻害することから、 KDR-bpはKDRのアンタゴニスト様の活性を示 すと考えた。この結果により、KDR-bpは、近

年報告された金属酵素インヒビターTIMP-3 に次いで3つ目のVEGF受容体結合タンパク質 であることを明らかにした。

<u>(4) VEGF受容体結合タンパク質KDR-bpの結合</u> <u>部位の同定</u>

血管内皮増殖因子VEGFはその受容体KDRに 結合することで、多彩な生理作用を示す。我々 の教室では、ヘビ毒に含まれる不活性型のホ スホリパーゼA2ホモログ(KDR-bpと命名)は KDRの細胞外ドメインに結合し、アンタゴニス ト様の性質を示すことを明らかにしている。 本論文では、KDR-bpのKDR結合部位を同定する 目的でKDR-bpの一次構造をもとに9種の合成 ペプチドを作成し、そのKDR結合性を検討した。 その結果、C末端のループ領域のペプチドが KDR-bpと同等の親和性で結合することが明ら かとなった。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計10件)

1. <u>Yamazaki Y</u>, Matsunaga Y, Tokunaga Y, Obayashi S, Saito M and <u>Morita T</u>: Snake venom vascular endothelial growth factors (VEGF-Fs) exclusively vary their structures and functions among species.

J. Biol. Chem. (査読有) in press

- Matsunaga Y, <u>Yamazaki Y</u>, Suzuki H, <u>Morita T</u>: VEGF-A and VEGF-F evoke distinct changes in vascular ultrastructure. *Biochem. Biophys. Res. Commun.* (査読有) 379: 872-875 (2009)
- Fujisawa D, <u>Yamazaki Y</u>, Lomonte B, <u>Morita T</u>: Catalytically inactive phospholipase A₂ homologue binds to vcascular endothelial growth factor receptor-2 via a C-terminal loop region. *Biochem. J.* (査読有) **411**: 515-522
- (2008)
 4. Waddington SN, McVey JH, Bhella D, Parker AL, Barker K, Atoda H, Pink R, Buckley SMK, Greig JA, Denby L, Custers J, <u>Morita T</u>, Francischetti IMB, Monteiro RQ, Barouch DH, Rooijen NV, Napoli C, Havenga MJE, Nicklin SA, Baker AH: Adenovirus serotype 5 hexon mediates liver gene transter. *Cell* (査読有) 132: 397-409 (2008)
- 5. <u>Yamazaki Y</u>, Nakano Y, Imamura T, <u>Morita</u> <u>T</u>: Augmentation of vascular permeability of VEGF is enhanced by

KDR-binding proteins. Biochem. Biophys. Res. Commun. (査読有) **355:** 693-699 (2007)

- 6. Kaji T, Yamamoto C, Oh-i M, Fujiwara Y, <u>Yamazaki Y</u>, <u>Morita T</u>, Plaas AH, Wight TN: The vascular endothelial growth factor VEGF165 induces perlecan synthesis via VEGF receptor-2 in cultured human brain microvascular endothelial cells. *Biochim. Biophys. Acta.* (査読有) 1760: 1465-1474 (2006)
- Tokunaga Y, <u>Yamazaki Y, Morita T</u>: Localization of heparin- and neuropilin-1-recognition sites of viral VEGFs. *Biochem. Biophys. Res. Commun.* (査読有) 348: 957-962 (2006)
- Atoda H, Yokota E, <u>Morita T</u>: Characterization of a monoclonal antibody B1 that recognizes phosphorylated Ser-158 in the activation peptide region of human coagulation factor IX. *J. Biol. Chem.* (査読有) 281: 9314-9320 (2006)
- Suzuki-Inoue K, Fuller GLJ, García A, Eble JA, Pöhlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, Theakston RD, Schweighoffer E, Zitzmann N, <u>Morita T</u>, Tybulewicz VLJ, Ozaki Y, Watson SP: A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood (査読有) 107: 542-549 (2006)
- Biola (皇郎) For one one (2000)
 Takahashi H, Wilkinson GR, Nutescu EA, <u>Morita T</u>, Ritchie MD, Scordo MG, Pengo V, Barban M, Padrini R, Ieiri I, Otsubo K, Kashima T, Kimura S, Kijima S, Echizen H: Different contributions of polymorphism in *VKORC1* and *CYP2C9* to intra- and inter- population differences in maintenance dose of warfarin in Japanese, Caucasians and African- Americans. *Pharmacogenetics Genomics* (査読有) 16: 101-110 (2006)

〔学会発表〕(計5件)

- 血液凝固IX因子と抗凝固タンパク質 (IX/X-bpおよびIX-bp)の相互作用に対 するMg²⁺の影響:石川みどり、<u>山﨑泰男</u>、 <u>森田隆司</u>、第55回毒素シンポジウム、 2008/7、山梨
- 2. 組織型および毒型VEGF(血管内皮増殖因子)のゲノム構造解析:山﨑泰男、齋藤

麻衣、德永優子、<u>森田隆司</u>、第55回毒素 シンポジウム、2008/7、山梨

- 血液凝固IX因子と抗凝固タンパク質 (IX/X-bpおよびIX-bp)の相互作用の速 度論的解析:石川みどり、<u>山崎泰男、森</u> 田隆司、日本薬学会128年会、2008/3、 横浜
- 異なるC末端ドメインを持つVEGFキメラの 創製とその生物活性: 夘月博和、山崎泰 <u>男、森田隆司</u>、日本薬学会 128 年会、2008/3、 横浜
- 5. 組織型と毒型の血管内皮増殖因子のゲノ ム構造解析とその進化論的考察:齋藤麻 衣、德永優子、長谷川芳裕、<u>山﨑泰男、森</u> <u>田隆司</u>、日本薬学会128年会、2008/3、 横浜

〔図書〕(計2件)

- <u>Yamazaki Y, Morita T</u>: Snake Venoms and Other Toxic Components Affecting Thrombosis and Hemostasis. In: Recent Advances in Thrombosis and Hemostasis 2008. (Tanaka K, Davie EW eds), Springer, pp462-482 (2008)
- <u>Yamazaki Y</u>, <u>Morita T</u>: Molecular and functional diversity of vascular endothelial growth factors. Mol. Divers. 10, 515-527 (2006)

〔産業財産権〕 ○出願状況(計0件) ○取得状況(計0件)

[その他]

```
6.研究組織
(1)研究代表者
森田 隆司 (MORITA TAKASHI)
明治薬科大学・薬学部・教授
研究者番号:18370048
(2)研究分担者
山崎 泰男 (YAMAZAKI YASUO)
明治薬科大学・薬学部・助教
研究者番号:30308621
```

(3)連携研究者