科学研究費補助金研究成果報告書

平成21年4月16日現在

研究種目:若手研究(B) 研究期間:2006~2008 課題番号:18700171 研究課題名(和文)非定常音源モデルに基づく高品位音声合成システムの開発 研究課題名(英文) Development of high quality speech synthesis system based on unsteady glottal source model 研究代表者 野村 英之 (NOMURA HIDEYUKI) 電気通信大学・電気通信学部・助教 研究者番号:90334763

研究成果の概要:自然性を有する音声合成システム開発のため,音源に含まれるゆらぎをシミ ュレーションにより検討する.音声には振幅,基本周波数,及び波形のゆらぎが含まれ,肺圧 の増加により増加した.さらに,左右非対称な声帯モデルによるシミュレーションとゆらぎ評 価を行ない,収録音声のゆらぎと比較を行った.対称モデルによるゆらぎと,収録音声に含ま れるゆらぎは一致した.非対称モデルによる音声のゆらぎは収録音声のものより増加した.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2006 年度	1,300,000	0	1,300,000
2007 年度	1,100,000	0	1,100,000
2008 年度	700,000	210,000	910,000
年度			
年度			
総計	3,100,000	210,000	3,310,000

研究分野:総合領域

科研費の分科・細目:知覚情報処理・知能ロボティクス キーワード:音声情報処理,声帯音源モデル,非定常音源,ゆらぎ

1. 研究開始当初の背景

社会の情報化にともない,身の周りの多くの 機器のインテリジェント化が進み,従来では考え られなかった多くの機能が組み込まれている.

また、これまで工場での作業支援が多くの活躍の場であったロボットが社会生活支援を目的 とし、通常の生活でも使用が望まれている.これ らのロボットの最終目標は「鉄腕アトム」であろう が、現時点ではそのレベルに達していない.

こういったロボットを含めたインテリジェント機器が日常生活により深く定着するには、それが 機械であることを意識しない操作方法、すなわちインターフェースが必要となってくる。そのため には人間が普段から使用するコミュニケーション 手段を利用することが望ましい. その代表が音 声を利用する手段である. このためには音声認 識や音声合成といった技術開発が必要となって くる.

現在,音声認識は雑音のない理想的な条件 ではかなり実用化が進められている.音声合成 も単に人間の言葉を発声(合成)するだめなら, ほぼ完成している技術である.一方で人間の感 情を読み取る,また,感情をこめた声の合成に は未解決な問題が多い.単に自然性のある,人 間の音声を合成することですら,難しいのが現 状である.このような背景から,人間らしい発声 する技術の開発が望まれている.

2. 研究の目的

本研究は「インテリジェント機器の音声インテ ーフェース及びロボットのための音声対話システ ム」を開発する研究の一環で実施される.特によ り自然性を有する発声機構の構築をめざし,音 声合成技術において,従来考慮されていなかっ た「音源の非定常性」に着目し,機械的で低品 質な合成音に「より自然性」をもたせるための基 礎的検討を行う.

合成音声が不自然である理由は,音声生成 過程を忠実に模擬していないことがひとつの理 由である.合成音声の音源信号は,周期的なパ ルス列を用いることが多い.ところが,実際の音 声生成過程の音源信号(断続的な声門流)は非 定常な振る舞いを示す.

本研究では、この音源の非定常な成分として「振幅ゆらぎ」、「ピッチゆらぎ」、及び「波形ゆら ぎ」に着目し、音源特性の解明を目的とする.特 に(1)非定常性を考慮した数値音源モデルの構 築、(2)提案数値音源モデルによるシミュレーショ ン、及び(3)シミュレーション音声のゆらぎ評価、 の3項目の研究を実施することを目的とする.さ らに提案モデルの応用として、(4)疾患音声の合 成シミュレーションを試みる.

3.研究の方法

本研究では合成音声用音源に,実際の人間 の音声に含まれるゆらぎ成分を付加するための 基礎検討として,シミュレーションによる検討を中 心に行う.また,疾患音声のシミュレーション,及 び実収録音声との比較を行う.

(1) 声帯音源数値モデルの構築

図1喉頭モデル.

図1に提案するモデルを示す.モデルは音源 に相当する声帯(Vocal cords),共鳴管に相当す る声道(Vocal tract),及びリザーバタンクに相当 する気管(Trachea)から構成される.このモデル における音声生成は以下のとおりである.

① まず,モデル下端に肺圧に相当する圧力

を加える.

- ② 声道終端部分との圧力差により、声門(声帯で形成される狭め)を通過する空気流、 すなわち声門流れが発生する.
- ③ この声門流れが声門の狭めを拡げようとす る力を与え、声門が開く.
- ④ 声門が拡大することで、肺圧と声道終端との圧力差が減少し、声門流の速度が減少する。
- ⑤ 速度減少により、声門の間隔が狭まる.

この①から⑤の繰り返しにより,声帯音源といわれる,準周期的な流れが生成される.この音源が声道の共鳴周波数により,音色が付加され,音声(母音)が生成される.

この研究では、この減少を流体力学の支配方 程式に基づきシミュレーションを行う.シミュレー ションでは時々刻々と変化する圧力や流速を計 算する.

③から⑤の課程で声門流により, 声帯が振動 する. このことを模擬するため, 声帯を等価的な 機械要素で表現する. そのモデルが図 2 である. 声帯の有効質量を有する弾性膜(Elastic cover) と, その機械的特徴を決定する分布した無数の ばね(Spring)とダンパ(Damper)で構成する. これ らの機械要素は声門流の圧力と結合し, その共 振周波数で振動する.

図2声帯の機械モデル.

(2) 提案モデルによる音声生成シミュレーション (1)で提案した物理モデル(喉頭モデル,及び 声帯モデル)を偏微分方程式で表現し,その振 る舞いを数値的にシミュレーションする.声門流 れは流体のもつ粘性及び熱伝導性を考慮した 式であり,これを有限差分法で解く.声帯の振動 は連立させた運動方程式で表現し, Runge-Kutta法で解く.両者を計算ステップ毎に 解き,音声生成を模擬する.

シミュレーションに用いるプログラムは C++言 語で開発する.また,数値計算はワークステーシ ョンを利用する.

シミュレーションは肺圧(Lung pressure) P_{L0}を 加圧する. 声道終端は音波の反射のない無反 射終端条件を課す. 喉頭, 及び声帯の形状と力 学的な特性は他文献による実測値, または推定 値を利用する. ただしシミュレーションで想定す る声道形状は幅一様とし、日本語母音の/e/に 近いものとする.

(3) ゆらぎ評価

図3母音波形の分割化.

母音波形をピッチごとに切り出し(図 3 参照), 生成音の揺らぎ評価として,振幅,ピッチ(基本 周波数),及び波形の 3 種類のゆらぎを評価す る.

- ① 振幅ゆらぎ: ピッチごとに抽出した波形の 個々の振幅の変動を評価する. 評価は抽 出した振幅の平均値 mと標準偏差σの比で ある変動係数 CV=σ/mで行う.
- ② 基本周波数ゆらぎ: ピッチごとの波形の基本周波数の変動係数,すなわちその平均値と標準偏差の比を評価する.
- ③ 波形ゆらぎ: ピッチごとの波形の統計平均 を平均波とし、そのエネルギーを Hとする. 平均波と各ピッチの波形との差をゆらぎ成 分とし、平均エネルギーを Nとする. 波形ゆ らぎは Harmonic-to-noise ratio、HNR=H/N で評価する.
- (4) 疾患音声のシミュレーションとゆらぎ評価

ポリープや腫瘍を有する喉頭疾患の場合,生 成音は健常者と比較し,ゆらぎが大きくなると予 想される.そのことを確認,検討するため,疾患 音声の生成シミュレーションを行う.ここでは左 右声帯の力学的特性,及び幾何学的特性が異 なり,非対称な声帯における音声生成シミュレー ション,またゆらぎ評価を行う.

さらに健常者である男性3名の日本語5母音 を収録し、そのゆらぎと比較することで、疾患の 程度と生成音のゆらぎの評価を行う.

4. 研究成果

(1) シミュレーション例

声帯の特性が左右対称かつ,健常者のそれ に合わせてシミュレーションを行った.図4にそ の一例を示す.(a),(b),(c)はそれぞれ声門から 下流方向(口唇方向,図1の上方向)へ距離0, 20,160 mmの位置(4段目の図中の〇に対応) での圧力波形 pである.なお音圧は肺圧 P_{L0} =800 Pa (ほぼ通常発生時の値)で規格化され ている.

この結果から、いずれの観測位置においても 圧力波形は振幅、および周期(基本周波数)が 一定ではなく、変動(ゆらぎ)が生じていることが 確認できる.また、ピッチごとの波形自身もゆら いでいることがわかる.このように、声帯に疾患 がないにも関わらず、生成される音声にはゆらぎ が含まれる.これらのゆらぎは、声門流れ自身が 層流ではなく、時間及び空間的に変動する乱流 的な振舞いをするためである.

図4シミュレーション波形.

(2) 肺圧によるゆらぎ変化

音声生成シミュレーション肺圧 P_{L0} を変化させ ながら行い,ゆらぎの評価を行った.その結果が 図 5 である.図の横軸は肺圧,縦軸は上から基 本周波数 f_0 の変動率(CV of f_0),振幅 P_{p-p} の変動 率(CV of P_{p-p}),及び波形ゆらぎ(HNR)である.

この結果は,肺圧の上昇により,いずれのゆら ぎも増加することを示す.また音源よりわずかに 下流(20 mm)でのゆらぎが最も大きいことがわか る.

図5肺圧とゆらぎの関係.

(3) 疾患音声シミュレーションゆらぎ評価 健常者の場合,左右声帯の(幾何学的,及び 力学的)特性はほぼ対称であると考えられる.そ こで,その特性を左右非対称にした喉頭疾患モ

図7力学的非対称性とゆらぎの関係.

デルにおいて,疾患音声のシミュレーション,及 びゆらぎ評価を行った.

図 6 は幾何学的特性の非対称性と,得られた シミュレーション音声のゆらぎの関係である. 左 から声帯の厚さ(a1, a2, a3),声帯の有効部分の 深さ(b1, b2, b3),及び喉頭中心からの声帯表面 までの距離(c1, c2, c3)の非対称性とゆらぎの関 係である. また,上から基本周波数の変動係数 (CV of f_0),振幅の変動係数(CV of P_{pp}),及び波 形ゆらぎ(HNR)である. なお,横軸は左側声帯 の特性を標準値に固定し,右側声帯の特性を 変化させた場合の値の比である. また,グレーの 部分は実収録音声を解析して得られたゆらぎで ある(平均値±標準偏差).

一般に, 左右声帯の非対称性が増加すると, 3 種類のゆらぎが増加する結果となった. 特に, 声帯の有効振動部分の深さの非対称性(b1, b2, b3)の変化が大きく影響している. これは, 他の 特性は単純に形状自身に影響するのに対し, 声帯の深さ変化は, 声帯の有効質量, 弾性率, 及び粘性率のいずれにも影響, そしてその共振 周波数を変化させるためである.

実収録音声のゆらぎは左右対称モデル(横軸 =0)の160 mm 位置での値とほぼ一致する. 非対 称性が増加することで、HNR の値が実収録音声のゆらぎ範囲から外れる結果である.

図 7 は力学的特性の非対称性と,得られたシ ミュレーション音声のゆらぎの関係である. 左か ら弾性率(a1, a2, a3),密度(b1, b2, b3),及び粘 性率(c1, c2, c3)の非対称性とゆらぎの関係であ る. データの表記方法は図 6 と同じである.

幾何学的特性の場合と同様に,非対称性の 増加で各ゆらぎは増加する.3 種類の非対称性 の中では密度の非対称性が最もゆらぎに影響を 与える.

実収録音声のゆらぎとは、左右対称モデルの 160 mmの位置でのゆらぎとほぼ一致した. HNR に関しては非対称性の増加により、実収録音声 のゆらぎ範囲から外れる結果となった.

(4) まとめ

より自然性を有する合成音声システム開発として、ゆらぎを考慮した音源の検討を行った.その基礎検討として、声帯音源の数値もモデルを 構築し、計算機シミュレーション、及びシミュレーション音声のゆらぎ評価を行った.

左右声帯の特性が対称な,健常者を想定し た声帯音源モデルによるシミュレーション音声に さえ,基本周波数,振幅及び波形にゆらぎが含 まれていた.特に,肺圧を上昇させることで,そのゆらぎは増加した.このことから,合成音声の音源にゆらぎを与えることは重要な点だといえる.

提案モデルの応用として,疾患音声の生成シ ミュレーション,及びゆらぎ評価を行い,さらに収 録音声のゆらぎと比較を行った.声帯のパラメー タの非対称性が増加することで,シミュレーショ ン音声のゆらぎは増加した.また,収録音声の ゆらぎと比較を行ったところ,非対称性の増加に より,シミュレーション音声のひずみは,収録音 声のそれより大きくなった.このことは,提案した 音源モデルが合成音声システムの発展はもとよ り,疾患音声の解析等の医用工学分野でも大い に応用できることを示唆する.

今後の課題として, 音源のゆらぎをどのように 合成音声システムへ組み込むかの検討が必要 となってくる.

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

- ① <u>H. Nomura</u> and T. Funada, "Fluctuations in pressure wave within the larynx," Acoust. Sci. & Tech., **30**, 55-58 (2009) (査読有).
- ② <u>H. Nomura</u> and T. Funada, "Effects of the false vocal folds on sound generation by an unsteady glottal jet through rigid wall model of the laynx," Acoust. Sci. & Tech., 28, 403-412 (2007) (査読有).
- ③ <u>H. Nomura</u> and T. Funada, "Sound generation by unsteady flow ejecting from the vibrating glottis based on a distributed parameter model of the vocal cords," Acoust. Sci. & Tech., 28, 392-402 (2007) (査読有).

〔学会発表〕(計13件)

- ① <u>H. Nomura</u>, T. Kamakura, and T. Funada, "A numerical analysis of fluctuations in pressure wave within the larynx using two-dimensional asymmetrical vocal folds model," in Proc. Acoustics '08, pp. 2375-2380 (2008. 7. 1, Paris, France).
- <u>野村英之</u>,船田哲男,"非対称声帯モデル による音声生成シミュレーション,"日本音 響学会 2007 年秋季研究発表会講演論文 集 2-4-18,481-482 (2007.9.20,山梨大).
- ③ <u>H. Nomura</u> and T. Fuanda, "A numerical experiment on waveform fluctuation within the larynx," in Proc. 19th International Congress on Acoustics, ICA 2007 (on CD-ROM, 2007. 9. 4, Madrid, Spain).
- ④ <u>H. Nomura</u> and T. Funada, "Effect of unsteady glottal flow on the speech

production process," in Proc. Interspeech 2007, 10th European Conference on Speech Communication and Technology, pp. 1390–1393 (2007. 8. 29, Antwerp, Belgium).

- ⑤ <u>野村英之</u>,船田哲男,"非対称声帯モデルによる疾患音声生成の数値シミュレーション,"電子情報通信学会技術研究報告SP2007-43 (2007. 7. 27,富山県立大).
- (6) <u>H. Nomura</u> and T. Funada, "Amplitude fluctuation of pressure wave within the larynx," in Proc. the Japan-China Joint Conference on Acoustics, JCA 2007 (on CD-ROM, 2007. 6. 4. Sendai, Japan).
- ⑦ <u>野村英之</u>,船田哲男,"声門ジェット流れの 非定常化の検討,"日本音響学会 2007 年 春季研究発表講演論文集 1-Q-26, 315-316 (2007.3.13,芝浦工大).
- (8) <u>H. Nomura</u> and T. Funada, "Lung pressure dependence of glottal sound source (A)," 4th Joint Meeting of the Acoustical Society of America and the Acoustical Society of Japan (2006. 12. 2, Honolulu, Hawaii), J. Acoust. Soc. Am., 120, 3372 (2006).
- ⑨ 西村仁, <u>野村英之</u>, 船田哲男, "非対称声 帯モデルによる喉頭疾患の声帯振動解 析,"平成18年度電気関係学会北陸支部 連合大会講演論文集 B-12 (2006. 9. 16, 金沢工大).
- 1) 西村仁,<u>野村英之</u>,船田哲男,"喉頭疾患時における声帯振動の数値解析,"日本音響学会 2006 年秋季研究発表会講演論文集 1-6-2, 157-158 (2006. 9. 13, 金沢大).
- <u>野村英之</u>,船田哲男,"声門で発生する乱 流音源に与える仮声帯の影響,"電子情 報通信学会技術研究報告 SP2006-30 (2006.7.21).
- ① <u>H. Nomura</u> and T. Funada, "Numerical experiment on lung pressure dependence of glottal sound source," in Proc. 5th International Conference of Voice Physiology and Biomechanics, ICVPB 2006, pp. 57-60 (2006. 7. 12, Tokyo, Japan).
- (B) <u>H. Nomura</u> and T. Funada, "Dependence of vocal cords vibration on lung pressure: Numerical modeling and experiment," in Proc. 9th Western Pacific Acoustic Conference, WESPAC IX 2006 (on CD-ROM, 2006. 6. 26, Seoul, Korea).

〔その他〕 ホームページ等

6. 研究組織

(1)研究代表者

野村 英之(NOMURA HIDEYUKI)

電気通信大学·電気通信学部·助教 研究者番号:90334763

(2)研究分担者 ()

研究者番号:

(3)連携研究者 ()

研究者番号: