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Evaluation of Internal Fatigue Damage in Short Fiber Reinforced Plastics by
Transmission X-Ray Diffraction
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As a result of a strain scanning method using X-rays on short fiber GFRP
having a three-layer laminated structure, the thermal strain in the plate thickness direction of the
PPS phase showed a compression value. On the other hand, the thermal strain in the in-plane
direction was relatively small in both the injection direction and the orthogonal direction.

Since the strain of the PPS phase increased proportionally with the loading stress, it was found
that the strain deformed according to the constant strain model. In addition, as a result of
predicting the PPS phase strain at fracture from the tensile strength, it was found that the weld
fractured with a small strain, which is a dangerous part. In welds, the ratio of increase in strain
in the PPS phase to the increase in macrostrain was small, so the bonding strength between the fiber

and the resin may be weak.
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Fig. 1 Specimen cut out from molded plate
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Fig. 2 Shape and dimensions of tensile specimen
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Table 1 X-ray conditions
Measurement material PPS
Energy level (keV) 20
Wave length (nm) 0.06199
M easurement method Transmission strain scanning
DS-1, hxw (mm) 0.1x0.1
RS-1, hxw (mm) 0.1x2.0
RS-2, hxw (mm) 0.1x2.0
Diffraction plane 111, 200
Diffraction angle 260 (deg) 8.20
Scanning range 26 (deg) 5.6-10.0
Preset time (s) 2
Number of partition 88
Step width (deg) 0.05
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Fig. 3 Measurements of strain in three directions
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Table 2 Mechanical properties
ecimen Young’s modulus Tensile strength Fracture strain
Sp E (GPa) o8 (MPa) &
MD 11.6 128.9 7.6x 103
TD 7.6 825 7.5x 102
WD 6.2 73.3 6.4x 103
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Fig. 5 Distribution of triaxial strainsin molded plate Fig. 6 Change of strain distribution in MD specimen
due to uniaxial loading
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Fig. 9 Change of strain in shell and core region due to applied strain, ca/E, under uniaxial loading



1 0 0 0

SHIMIZU Kenichi IWAHORI Keisuke SATO Tatsuki TSUCHIHASHI Hiromu KATO Naoki TANAKA Keisuke

69

Evaluation of Internal Strain Distribution in Glass-Short-Fiber Reinforced Plastics by 2020
Synchrotron Strain-Scanning Method
Journal of the Society of Materials Science, Japan 300 307

DOl
10.2472/jsms.69.300

14 0 1
GFRP
68
2019
GFRP
53 X
2019
CFRP
M&M2019

2019




CFRP

M&mM2019

2019

CFRP

M&M2019

2019

GFRP

2019

2019

GFRP

19

2019




CFRP

19

2019

Kenichi Shimizu, Yuya Hasegawa and Keisuke Tanaka

Effect of Thickness on Fatigue Crack Propagation in Injection Molded Short Carbon Fiber Reinforced Plastics
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