研究成果報告書 科学研究費助成事業

今和 6 月 1 8 日現在 3 年

機関番号: 13904
研究種目: 基盤研究(C)(一般)
研究期間: 2018 ~ 2020
課題番号: 18K04233
研究課題名(和文)量子情報デバイス応用に向けたEu添加GaNナノコラム結晶の作製と量子光学物性評価
做先課題名(央文)Fabrication and quantum optical characteristics of Eu doped GaN nanocolumn for quantum information device
研究代表者
関口 寛人 (Sekiguchi, Hiroto)
豊橋技術科学大学・工学(系)研究科(研究院)・准教授
研究者番号:00580599
◎ 交付決定額(研究期間全体):(直接経費) 3,400,000円

研究成果の概要(和文):光量子コンピュータは超並列計算を実現し,人工知能の発展,自然現象の予測の開発 と多岐にわたる分野への貢献がきたいできるため,その要素技術の開発は急務である。エネルギー揺らぎの少な い量子準位をもつEu原子を活用すれば長い量子情報保持時間をもつ量子メモリが実現できるが、微細集積化に適 した母材は見つかっていない。この研究では,Eu原子を添加した窒化物半導体に着目した。Eu原子の量子準位の 効率的な利用のために結晶中に欠陥を含まず、ひずみ緩和効果が発現する柱状ナノ結晶を用いて高品質化を目指 し,量子準位の均一化を図るためナノ結晶の形状制御技術に取り組み,集積可能な量子情報デバイス実現への可 能性を調べた。

研究成果の学術的意義や社会的意義 結晶中にEu原子を効率よく活性化するために,Euを均一に取り込みかつ,光学遷移を活性化させる必要がある。 しかしながら,活性化のための抜本的な解決策は見出されておらず,今回取り組んだナノコラム結晶の利用はこ の問題を解決できる可能性を秘めている。選択成長技術を見出すことで,均一な取り込み制御と発光効率の向上 が期待でき,その可能性の模索が行われた。このような技術が見出されれば,量子コンピューティングだけでな く,室温で明るい単一光源や外部環境に依存せず高い波長安定性を有する赤色発光デバイス,超小型増幅器の集 積化にも貢献すると期待できる。

研究成果の概要(英文):Since photon computers can realize a parallel computer, which contributes to the development of artificial intelligence, the development of prediction of natural phenomena, and a wide range of fields, the development of elemental technologies is urgently needed. A quantum memory with a long quantum information retention time can be realized by utilizing an Eu atom with a quantum level with little energy fluctuation, but a host material suitable for integration has not been found. In this study, we focused on nitride semiconductors with Eu atoms. For efficient use of the quantum level of Eu atoms, we tried to improve the quality by using nanocolumns that do not contain threading dislocation in the crystal and exhibit strain relaxation effect. . We worked on nanocrystal shape control technology to uniform quantum level. These research contributes the realization of a quantum information device that can be integrated.

研究分野:半導体結晶成長

キーワード: ユーロピウム 窒化ガリウム ナノコラム

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

様 式 C-19、F-19-1、Z-19(共通)1.研究開始当初の背景

量子情報通信システムや量子コンピュータの実現に向けて, 偏光状態により量子情報を与え られた光子を,保持・演算が得意な電子スピンへと変換する量子メディア変換デバイスやそれに 基づく量子メモリといった量子中継デバイスの開発が急務である。これらの量子情報デバイス ではエネルギー揺らぎが少ない量子準位を形成できる固体材料の探索が重要である。希土類元 素は外殻電子によって遮蔽された 4f 内殻電子をもつためこの量子準位を活用すれば, 固体材料 中でも外部環境に左右されない理想的な量子準位を形成できる。最近ユーロピウム(Eu)イオンを 添加した無機酸化物結晶(Y₂SiO₅:Eu)においてミリ秒の単一光子量子メモリ時間, 6 時間の核スピ ンコヒーレンス時間をもつことが実証され,希土類元素の優位性が確かめられつつあった。一方 で, 無機酸化物結晶はウェットおよびドライエッチングが難しく, 微細加工性に問題があること から, 微細・集積化に大きな課題があった。そこで本研究ではこの Eu イオン特有の機能を発現 させうる別材料として, Eu 添加窒化物半導体(GaN:Eu)に注目して研究を進めてきた。GaN の微 細加工性やエピタキシャル成長の利点を活かせばブラッグ反射鏡(DBR)やフォトニック結晶を 導入可能で光共振器とのモノリシック集積が可能になる。また結晶中の Eu 原子の量子準位を高 効率に活用するには Eu 原子の高濃度化を図りつつ, 各 Eu 原子間でエネルギー移動を生じない ような距離に Eu 原子を精密に制御して結晶中に取り込む技術が求められる。

2. 研究の目的

本研究では、高 Eu 濃度 GaN 結晶の光学的活性化、精密な Eu 取り込み制御および光共振器と のモノリシック集積に向けて、ナノ結晶効果(結晶欠陥抑制/ひずみ緩和)を発現する GaN ナノ コラム結晶に着目した。研究代表者は自己形成 GaN ナノコラムに Eu 添加を行い、薄膜で発光効 率が大きく低下する Eu 濃度 1%以上において光学遷移の不活性化を大きく抑制する知見を得て きたが、ランダムな自己形成法では Eu 取り込み制御は期待できないため、これまでに開拓して きた選択成長法を用いた規則配列ナノコラムによって位置/形状を制御し、周期的な構造を設 けて、Eu 取り込み制御を試みた。さらにデバイス化に向けた検討を進めていくとともに、これ までに理解が不十分であった GaN 薄膜結晶についての光学物性評価についての知見を深めるこ とも目的に加えた。

3. 研究の方法

本研究では、「光学遷移が活性化された高濃度 GaN:Eu ナノコラム結晶の実現」をテーマにして、以下の3つのテーマについて取り組んだ。

- (a) 自己形成 GaN:Eu ナノコラムを用いた LED デバイスの作製
 GaN:Eu ナノコラム層を活性層として PN 接合に挟まれたナノコラム LED 構造の作製を行い、デバイス特性評価を行った。
- (b) 選択成長法を用いた GaN:Eu 規則配列ナノコラムの作製 研究代表者がこれまで取り組んできた Ti マスク選択成長法を GaN:Eu ナノ結晶に適用する ことでナノ共振器に応用可能な規則配列された GaN:Eu ナノ結晶を得ることとした。また形 状制御により発光特性の制御に寄与できる可能性を調べた。
- (c) GaN:Eu 薄膜結晶の光学物性評価 これまでに作製してきた GaN:Eu 薄膜結晶中に形成される Eu 発光中心の分布を調べて発光 中心がどのように制御されるのかその知見を得ることとした。
- 4. 研究成果

本研究における成果をまとめると以下のとおりである。

- (1) RF-MBE 法により p-GaN/GaN:Eu/n-GaN 構造をもつナノコラムを作製し,整流特性を得て, 電流の変化によって波長がほとんど変化しない赤色発光デバイスを実現した。
- (2) Ti 層を成長抑制のためのマスクとした選択成長技術を用いて GaN ナノコラム結晶の規則配列化を達成し、GaN:Eu 層を形成することで規則配列 GaN:Eu ナノコラムを得た。またナノコラムサイズにより発光中心を制御できる可能性を見出した。
- (3) Eu 濃度の異なる GaN:Eu 薄膜結晶について PL-PLE マッピング法を用いて結晶中に含まれる Eu 発光中心の分布を調べた。低 Eu 濃度では単一サイト化されることが示された。

それぞれの実験の詳細を以下に述べる。

RF-MBE 法を用いて低抵抗 n 型シリコン(111) 基板上に n 型 GaN ナノコラムを成長後, GaN:Eu ナノコラム活性層を作製し, 最後に p 型 GaN 層を成長した。図 1 に Eu 濃度 2×10²⁰ cm⁻³の GaN:Eu ナノコラム LED の鳥瞰 SEM 像を示す。n 型 GaN ナノコラムおよび GaN:Eu 活性層では独立し た柱状ナノ結晶構造を維持したが, p 型 GaN 層では低温成長と Mg 添加により横方向成長が促 進され, ナノコラムトップにおいて連続膜が得られていることがわかる。それぞれの層の膜厚は おおよそ 650nm, 80nm, 850nm であった。p-GaN 層において連続膜が形成されたため、ナノコ ラム間を絶縁材料で埋めることなく EB 蒸着法を用いてナノコラム LED 上部に ITO 電極を形成

し,縦方向に電流注入が可能となるよう にした。ナノコラム LED の電流-電圧特 性を調べたところ、図2に示すように立 ち上がり電圧 5V の整流特性が得られ,赤 色の発光が観察された。次に, Eu 濃度の 異なる活性層をもつ GaN:Eu ナノコラム LED を用意して,発光特性を評価した。 発光スペクトルはEu濃度による違いは観 測されなかった。また Eu 濃度 2×10²⁰と 6×10²⁰ cm⁻³の範囲において Eu 濃度の増 大に伴い発光出力の増大が観測された。 また発光波長の電流依存性を調べたとこ ろ、1~20mAの範囲において 0.2nm 以下 と波長安定性が高いことが示された。こ れらの実験から GaN:Eu ナノコラムによ るデバイス化の可能性が示された。

次に,フォトニック結晶の形成に向けて,選択成長を用 いた規則配列 GaN:Eu ナノコラムの形成を目指した。また 加えて、更なる発光効率の向上を目指し、電子閉じ込め構 造となる量子井戸構造の形成を試みた。選択成長はこれま でに開発してきた Ti マスクによる技術を活用した[21]。 図 3に本研究で作製したサンプルの構造図を示す。規則配列 GaN ナノコラムを得るための基板として(0001) GaN テン プレート基板を用意した。まずプラズマ CVD 法によって SiO₂を 20nm 成膜した。 選択成長において SiO₂ 膜は必須で はないが、 Eu 元素の取り込みのために低温成長が必要と なる GaN:Eu 層は選択成長が実現できないために、パターニ ング領域外の Ti マスク上に GaN:Eu のナノ結晶が形成され る。デバイスプロセスにおいてこのナノ結晶の除去は必須と なるが、その除去技術が課題の1つとなっている。今回のよ うに Ti マスクの下部に SiO2 薄膜を挿入すれば,結晶成長後 にフッ酸処理を施すことでこの SiO2層をエッチングし、ナノ 結晶をリフトオフし、容易に除去することが可能になる。こ の SiO₂ 薄膜の成膜に続けて, EB 蒸着法により Ti を 10nm 成 膜した。 次に, EB 描画装置とドライエッチング装置によって ホール径 80~300 nm, 周期 200~600 nm の三角格子配列した ナノホールパターンを形成した。MBE チャンバーにて 870 °C, 窒素流量 0.4 sccm, RF パワー450 W にて GaN を 150 分 間成長した。その後,725 °C において Eu 添加 InGaN 層を井

戸層とした InGaN:Eu/GaN 量子井戸を 10 ペア成長した。InGaN:Eu 井戸層および GaN 障壁層の 設計膜厚はそれぞれ 5 nm および 10 nm である.また量子井戸に用いる InGaN 層の In 組成を調 べるために、参照資料として Eu を添加していない InGaN/GaN 量子井戸ナノコラムを作製した。 作製したナノコラム結晶の SEM 観察を行ったところ、図4に示すように、直径 130-280nm の範 囲で制御性よく、直径制御されていることが確認された。ナノコラムの高さは 400nm 程度であ った。参照資料を用い、室温において PL スペクトル評価を行ったところ、いずれのパターンに おいてもピーク波長が 390-400nm となる発光が観測された。InGaN/GaN の設計膜厚を用いてシ ュレディンガー方程式から発光波長と In 組成の関係性について検討を行ったところ、In 組成は 5~6%であると考えられた。異なるナノコラム直径に対して PL スペクトルを評価したところ、ナ ノコラム直径が 240 nm 以下においては 622.4 nm をピークと

する単峰性の発光が観測されたが,直径 240 nm 以降におい てピーク波長 620.3 nm とする新たなピークが観測された。 これは形状制御が Eu 取り込みを制御できることを示唆して いる。

Eu 発光中心について理解を深めるために,(0001)GaN テ ンプレート上に成長した GaN:Eu 薄膜の光学特性評価を行っ た。試料は 825°C にて 10 分間 GaN バッファ層を成長後,同 温度にて Eu, Mg 共添加 GaN を 50 分間成長した。SIMS 測 定により見積もられた Eu 濃度は 3×10^{18} cm⁻³ $\sim 2 \times 10^{20}$ cm⁻³ で あり, Mg 濃度は 3×10^{18} cm⁻³ であった。これらの試料につい て 4K にて PL 測定を行ったところ,いずれの試料において も 620.3nm が支配的なピークが観察され,Eu 濃度の高い試 料では 622.0nm および 622.9nm の付近にも発光ピークが観 察された。これらの試料の Eu 発光中心を詳細に調べるため,

図 3. 規則配列 InGaN:Eu/GaN 量子井 戸ナノコラムの試料構造

井戸ナノコラムの表面 SEM 像

PL-PLE マッピング法を用いて評価したところ, Eu 濃度の高い 2×10²⁰ cm⁻³の試料では多くの発 光中心が観察された一方で, Eu 濃度が低い 3×10¹⁸ cm⁻³では 620.3nm に起因する発光中心以外の 発光が観察されなかった。これは結晶中に形成された発光中心が単一化されたことを示唆して おり,結晶成長技術の革新によって Eu 発光中心の制御ができる可能性を示す結果となった。

5.主な発表論文等

[雑誌論文] 計4件(うち査読付論文 4件/うち国際共著 0件/うちオープンアクセス 0件)

1.者者名 H. Sekiguchi, M. Sakai, T. Kamada, K. Yamane, H. Okada, and A. Wakahara	4. 奁 125
2 . 論文標題 Observation of single optical site of Eu and Mg codoped GaN grown by NH3-source molecular beam	5 . 発行年 2019年
epitaxy	
3.雑誌名	6.最初と最後の頁
Journal of Applied Physics	175702
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1063/1.5090893	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.者者名 1.H. Sekiguchi, M. Sakai, T. Kamada, K. Yamane, H. Okada, and A. Wakahara	4.
2 . 論文標題	5 . 発行年
Fabrication and optical properties of regularly arranged GaN-based nanocolumns on Si substrate	2019年
3 . 雑誌名	6 . 最初と最後の頁
Journal of Vacuum Science and Technology B	31207
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1116/1.5088160	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	

1.著者名	4.巻
H. Sekiguchi, K. Date, T. Imanishi, H. Tateishi, K. Yamane, H. Okada, K. Kishino, and A.	511
Wakahara	
2.論文標題	5 . 発行年
Regularly arranged Eu-doped GaN nanocolumns grown by RF-plasma-assisted molecular beam epitaxy	2019年
through Ti-mask selective-area growth technique	
3.雑誌名	6.最初と最後の頁
Journal of Crystal Growth	73-78
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1016/j.jcrysgro.2019.01.032	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 A Sukenawa H Sekinuchi Y Tamai S Fuliwara K Yamane H Okada K Kishino and A	4.巻 216
Wakahara	
2.論文標題	5 . 発行年
Self-organized Eu doped GaN nanocolumn light-emitting diode grown by RF-molecular-beam epitaxy	2019年
3.雑誌名	6.最初と最後の頁
Physica Status Solidi A	1800501
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1002/pssa.201800501	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計13件(うち招待講演 1件/うち国際学会 6件)

 1.発表者名 奥野 智大、小野田 稜太、関口 寛人、若原 昭浩、中岡 俊裕

2 . 発表標題

RF-MBE法によるEu添加GaN薄膜および自己形成ナノコラムにおけるゼーマン分裂

3.学会等名第68回応用物理学会春季学術講演会

4 . 発表年

2021年

1.発表者名 Hiroto Sekiguchi, Masaru Sakai and Akihiro Wakahara

2 . 発表標題 Possibility of Single Optical Site of Eu and Mg Codoped GaN

3. 学会等名 13th International Conference on Nitride Semiconductors(ICNS-13)(国際学会)

4 . 発表年 2019年

1.発表者名
 小野田 稜太, 関口 寛人, 若原 昭浩, 中岡 俊裕

 2.発表標題 濃度の異なるEu添加GaN薄膜におけるゼーマン分裂

3.学会等名第80回応用物理学会秋季学術講演会

4.発表年 2019年

1.発表者名

関口 寛人

2.発表標題 GaN ナノコラムの結晶成長と光デバイス応用

3 . 学会等名

2019年日本表面真空学会中部支部研究会 『ナノ結晶成長・評価・応用の研究最前線』(招待講演)

4.発表年 2019年

1.発表者名

H. Sekiguchi, A. Sukegawa, K. Yamane, H. Okada, K. Kishino, and A. Wakahara

2.発表標題

Growth of Eu doped GaN nanocolumns by rf-plasma-assisted molecular beam epitaxy

3 . 学会等名

UK Nitride Consortium(国際学会)

4.発表年 2019年

1.発表者名

A. Sukegawa, H. Sekiguchi, Y. Tamai, S. Fujiwara, K. Yamane, H. Okada, K. Kishino, and A. Wakahara

2.発表標題

RF-MBE growth of regularly arranged Europium doped GaN nanocolumns on AIN/Si template for single photon emitter

3 . 学会等名

Interanational Workshop on Nitride Semiconductors 2018(国際学会)

4.発表年 2018年

1.発表者名

H. Sekiguchi, Y. Higashi, K. Yamane, H. Okada, A. Wakahara, K. Kishino

2.発表標題

Effect of column diameter and height on optical properties of regularly arranged GaN nanocolumn grown by rf-MBE

3 . 学会等名

34th North American Molecular Beam Epitaxy Conference(国際学会)

4 . 発表年 2018年

1.発表者名

H. Sekiguchi, K. Yamane, H. Okada, K. Kishino, and A. Wakahara

2.発表標題

Fabrication of regularly arranged InGaN:Eu/GaN quantum wells by rf-plasma-assisted molecular beam epitaxy

3 . 学会等名

20th International Conference on Molecular Beam Epitaxy(国際学会)

4.発表年 2018年

1.発表者名

H. Sekiguchi, R. Matsuzaki, A. Sukegawa, K. Yamane, H. Okada, K. Kishino, and A. Wakahara

2.発表標題

Eu doped GaN nanocolumn light-emitting diodes exhibiting high emission-wavelength stability

3 . 学会等名

The 45th International Symposium on compound semiconductors (国際学会)

4.発表年 2018年

1.発表者名

高木俊裕, 関口寛人, 玉井良和, 山根啓輔, 岡田浩, 岸野克巳, 若原昭浩

2 . 発表標題

GaNナノコラムの光共振器構造の設計と作製

3.学会等名第66回応用物理学会春季学術講演会

4.発表年 2019年

1.発表者名

藤原慎二郎,関口寛人,助川睦,玉井良和,山根啓輔,岡田浩,岸野克巳,若原昭浩

2.発表標題

RF-MBE法を用いたAIN/Si基板上への規則配列Eu添加GaNナノコラムの成長

3.学会等名
 第66回応用物理学会春季学術講演会

4.発表年 2019年

 1.発表者名 藤原慎二郎,関口寛人,助川睦,玉井良和,山根啓輔,岡田浩,岸野克已,若原昭浩

2.発表標題

Fabrication of regularly arranged Eu-doped GaN nanocolumns on AIN/Si substrate grown by RF-MBE

3 . 学会等名

第37回電子材料シンポジウム

4.発表年 2018年

1.発表者名

小野田稜太,関口寛人,若原昭浩,中岡俊裕

2 . 発表標題

MBE成長Eu添加GaN薄膜におけるゼーマン分裂

3.学会等名第79回応用物理学会秋季学術講演会

4 . 発表年

2018年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
研究協力者	酒井 優 (Sakai Masaru)	山梨大学・総合研究部・准教授	
	(10371709)	(13501)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------