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Realizing massively parallel functional programming language by integrating
parallel technologies into SML#, an ML-style functional language
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The major technical challenge in realizing a massively parallel functional
language is to establish a parallel and concurrent garbage collection (GC) that supports a large
number of light-weight system threads running on a multi-core CPU. Through this research, we have
established novel parallel and concurrent garbage collection method and 1ts implementation
techniques, and have implemented the GC method in a full-scale ML-style functional language, SML#.
The resulting SML# supports more than one million lightweight user threads running on multi-core

CPU. The benchmark evaluation shows good scalability on a multi-core processor comparable to C, and
it outperforms other GC-based compilers in most cases. In addition to this new GC method, we have

extended SML# with various advanced features and have released the SML# compiler as open-source
software through the GitHub repository.
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val puts = _import "puts” : string -> int L#"‘\)\é\
fun f x = ignore (puts (b x)) Y@,
val _=f{a i", b = “Hello"} 4
val _= f {b = "World", ¢ = "SMLs"}
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Concurrent and parallel garbage collection for lightweight threads on multicore processors
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