©
2018 2022

ML SML#

Realizing massively parallel functional programming language by integrating
parallel technologies into SML#, an ML-style functional language

Ohori, Atsushi

3,300,000

ML

GC) GC
ShL#
ML GC

SML# SML#4.00

ML
SML#

SML# 4.00 GitHub
SML WEB

ML

The major technical challenge in realizing a massively parallel functional
language is to establish a parallel and concurrent garbage collection (GC) that supports a large
number of light-weight system threads running on a multi-core CPU. Through this research, we have
established novel parallel and concurrent garbage collection method and 1ts implementation
techniques, and have implemented the GC method in a full-scale ML-style functional language, SML#.
The resulting SML# supports more than one million lightweight user threads running on multi-core

CPU. The benchmark evaluation shows good scalability on a multi-core processor comparable to C, and
it outperforms other GC-based compilers in most cases. In addition to this new GC method, we have

extended SML# with various advanced features and have released the SML# compiler as open-source
software through the GitHub repository.

SML# GC CPU

ML

ML
ML
C
SML#
SML#
(6}
OCaml ML
C
ML SML#
SML# oS
ML
SML#
SML#
SML#
SML#
ML SML#
SML# C
C
ML
CPU
0S
CPU
CPU
GC
GC
CPU GC user-worker
worker
GC GC
GC

SML#

CPU

ML
CPU
POSIX

ML

ML

ML

CPU

SML#

SML#
SML#

GC
worker

° user
GC

GC

GC
CPU

ML

Dynamic.pp;
val it = fn :

SML#

SML#

ML

Damas

ML

[“a#treify. *©

Milner

SML#

user-worker

GC
GC
worker
GC
GC
SML#
SML
ML SML#
GC
a -> unit]

SML#

SML#

user
worker

GC

stop-the-word

GC
SML#
C
OCaml
SML#
SML#

ML

SML#

SML#

SML#

SML#

ML

SML

SML#

SML#4.00

SML#

ML

GitHub
smlsharp.github.io/ja

SML#

SML#

SML#

SML

SML#

ML

ML ML

SML#

YouTube
youtube.com/@keisankikagaku
SML#

SML#

OCaml

B sMe7OSTo -

Haskell ML

x4
> C @ smisharpgithubiofia/ 6<% 0O :

AR-ZLDAMLLRALRELRMERITVE

Fo BLCIS TSMLICDLT) 2TRSRT W,

SMLHZA —T >V —2OMBRTOS SV IERT [em |
. Standard MLE B E RS 415, CEEPT— FJ
val puts = _import "puts” : string -> int L#"‘\)\é\
fun f x = ignore (puts (b x)) Y@,
val _=f{a i", b = “Hello"} 4
val _= f {b = "World", ¢ = "SMLs"}

BED=21—2
SMLEDFB BN HE L
20215411150

[SML#THH B RBMLTOT 5 I 7 HARFSNELR.

ML SML#

@ ASTONRAHTT x4 C oo o)
€ 5 C @ youtubecom/mierankikagsi/playints e <% 00Q:
= ©Youlube " Ay x a s » 0 @

FRCOBEVAL v

fERLABEY R b

ECTRBEE Werdoms PC. LRI WERR £
22 anen VI RO~ X)

mruarosaens nrUAroLEERS

3 3 0
)) vol. 35, no. 3
2018
379 - 3.95

DOl

10.11309/jssst.35.3_79

Atsushi Ohori, Katsuhiro Ueno, Hisayuki Mima

Volume 2 Issue ICFP

Finitary polymorphism for optimizing type-directed compilation

2018

Journal Proceedings of the ACM on Programming Languages (PACMPL)

Article No. 81

DOl
10.1145/3236776

vol. 11, no. 3

SML#

2018

PRO

1-13

DOl

13

ML

25

PPL 2023

2023

Katsuhiro Ueno, Atsushi Ohori

Concurrent and parallel garbage collection for lightweight threads on multicore processors

Proceedings of the 2022 ACM SIGPLAN International Symposium on Memory Management (ISMM 2022), pp 29-42, DOI
https://doi.org/10.1145/3520263.3534652

2022

Atsushi Ohori, Katsuhiro Ueno

A Compilation Method for Dynamic Typing in ML

19th Asian Symposium on Programming Languages and Systems, APLAS 2021 - Chicago, 2021/10/17-2021/10/18

2021
SML#
37
2020
37

2020

37

2020
LLVM IR
37
2020
SML# MassiveThreads
36
2019
SML#
36

2019

SML#

36

2019

Java PathFinder ML

The 2nd. cross-disciplinary Workshop on Computing Systems, Infrastructures, and Programming (xSIG 2018)

2018

ML

The 2nd. cross-disciplinary Workshop on Computing Systems, Infrastructures, and Programming (xSIG 2018)

2018

, Karim HAMDI, ,

loT

The 2nd. cross-disciplinary Workshop on Computing Systems, Infrastructures, and Programming (xSIG 2018)

2018

2021
196
2021
242
SML# ML
SML#
https://smlsharp.github.io/ja/
SML# SML# GitHub
https://ww.youtube.com/@keisankikagaku
SML# SML# ML
(Ueno Katsuhiro)
(60551554) (13101)

