©
2018 2022

Practice of tutoring sup?grt environment for early development of programming
skills with software quality

Noguchi, Yasuhiro

3,400,000

This study identified a problem in that current initial programming
education often focuses on the syntax and logic structuring methods of programming languages, which
prevents students from learning programming with an awareness of quality characteristics such as
modifiability, testability, and security. In order to realize an environment in which students can
learn basic programming skills while focusing on quality from the initial stage, we proposed a
visualization support system that enables early learners to evaluate the quality of their editted
exercise code themselves. In order to reduce learner confusion caused by that insufficiently
understood learning items are widely dispersed in multiple subsequent learning areas (e.g.,
operating system, computer architecture, computer network, object oriented design, automated
testing, and others) when learners get stuck, we developed an support environment that enables
learners to refer to learning items corresponding to their stuck.



[a]

ACM Computing Curricula[b]
0S

[c]

Q)
®

©
) PDCA

QY

®
[d]Le]



Lv.3

Lv.2

Lv.3: Learning ltems
corresponding with
learners’ impasse

Lv.2: Impasse Line
Number on Standard
Algorithm

Lv.1: Impasse Line
Number on Individual
Learner’s Code

Learning Items

Standard Algorithms (Model
Codes) of all exercises in the

Program Codes Learners

Learning item

P

",

e,
.,

Learning Item (B) [fxa ]

Learning Item e
A
Standard
Algorithms in
l I I I past classes
Instruction for the A Tutoring for
classroom and update each learner
materials in the cou

[f]

[a]

(ON)

[65]65]65]65]65]65]65]65]65]65[65] 0 [0 [0 0]
L ] g€ S e ot it mell I

1 L] ]

[65]65]65]65]65]65] 65 [65[65]65]
e ] A ] P e ) )

TEDVIT



IF

[i]

Class Diagram Area
(Testing Component (Testwyash |
Test Target Component—finterface] (MyHash | (ReyCollsionintertace)

p,eduumco[mgmur jm.]xk' 'Kq(o} fsion

4|
s|
6l

3|public class KeyCollision implements KeyCOllisionInterface {

public int rehash(int h,MyKeyword[] table) {
while(table[h] != null) {
h = (h+1) % table.length;

7
18|
19|
20|
2|
22|
23|
22|
2|
26|
27|
28|
2|
30|

public void insert(Mykeyword k, KeyCollision keycol) {
if(element == table.length) {
throw new IllegalStateException(“The table is already f

string key = k.getKey();
int h=0;

for (int i = 8; 1 < key.length(); i++) {
= r o+ (int)key.charAt(i);

}
h = rX table.length;

h = keycol.rehash(h, table);

Your choice is not appropriate design improvement for the goal at the step.
Please read the following message, and consider again by clicking the "Back”
button.

At irst, the code with your improvement of the component design can be built
successfully. You changed the interface of the testing method in the test target
component ("insert" in "MyHash") to accept a new parameter of the production
component type (‘insert” has a parameter “keycol® of the type "KeyCollision").

This change of the design enabled the component to invoke the
method of a production component (“rehash” in “KeyCollision").

However, the design of the component remains a difficult
situation where the testing component (“TestMyHash") cannot

change the behavior of the test target component ("Myash") by
changing the parameter from the production component
("KeyCollision") into a mock object (it has not defined yet)

To possess the ability on the test target component, the

component must be designed to receive both types of components
("keycollision" and "Mock") via the common interface
("KeyCollisionInterface”). -

Return to select question Back

Pre-test

Post-test Difference

Experimental

16.56

30.27

13.71

Control

15.62

19.82

4.20

Difference

0.94

10.45 9.51**

L1kl

(0) PDCA

enPiTSec PBL

-0 Basic SecCap

[1]

Java

[h]



i Self-Review
- Support
Environment

Requirement
Specifications
‘

Learner

Learner’s
created class
diagram

Natural Language Feedback
for selected objects

Comparison between drawn model, model in
mind, and requirement via Natural Language

4

[a] IPA (2005). )

[b] ACM and IEEE-Computer Society Joint Task Force on Computing Curricula (2013).
Computer Science Curricula 2013 Ironman Draft (Version 1.0),
http://ai.stanford.edu/users/sahami/CS2013/ironman-draft/cs2013-ironman-v1.0.pdf,
accessed at 2017-10-25.
[c] IPA (2017). 1IPA , https://www.ipa.go.jp/security/,
accessed at 2017-10-25.
[d] Noguchi, Y., Ayabe, K., Yamashita, K., Kogure, S., Yamamoto, R., Konishi, T.,
Itoh, Y. (2020.11). Experimental Design of Automated Extraction for 3-Level Tutoring
Support Information in Programming Exercises, Proceedings of the 28th International
Conference on Computers in Education, 255-260
[e] lkegame, T., Noguchi, Y., Kogure, S., Yamashita, K., Yamamoto, R., Konishi, T.
and Itoh, Y. (2021.12). Instruction Support System Using Impasse Detector and Major
Failure Diagnoser for Programming Exercises, Proceedings of the 29th International
Conference on Computers in Education, 700-702.
[f] Yamashita, K., Fujioka, R., Kogure, S., Noguchi, Y., Konishi, T., and Itoh, Y.
(2017) Classroom practice for understanding pointers using learning support system
for visualizing memory image and target domain world, Research and Practice in
Technology Enhanced Learning (RPTEL), 12:17, 1-16, doi:10.1186/s41039-017-0058-4.
[g] , , , , , . (2019)

, 44 , 45-56.
[h] Noguchi, Y., Ihara, D., Kogure, S., Yamashita, K., Konishi, T. and Itoh, Y.
(2019.12) Learning Support System for Software Component Design based on Testability,
Proceedings of the 27" International Conference on Computers in Education, 306-311.
(Kao Shuan, Taiwan). (Best Technical Design Paper Award Nominee)
[1] Muramatsu, M., Noguchi, Y., Kogure, S., Yamashita, K., Konishi, T., Itoh, Y.
(2020.11). Introducing a Mock Technique into a Learning Support System for Program
Design Based on Testability, Proceedings of the 28th International Conference on
Computers in Education, 205-214
[1]1 Noguchi, Y., Nishihata, S., Kogure, S., Yamashita, K., Kondo, M., Konishi, T.
(2021.3). What is the Meaning of My Model? - Self-Review Support Environment based on
Natural Language Translation from Learners’ Software Structural Models, In
Proceedings of the 52" ACM Technical Symposium on Computer Science Education (SIGCSE
* 21) ACM, New York, NY, USA. 7 pages. https://doi.org/10.1145/3408877.3432387
k] , , , , , , . (2019.09) UML

, 44
, 37-38.

[171 Knowledge System Lab (2023). Testability Learning Support System (TLS),
https://wwp.shizuoka.ac.jp/ks/research/tls/contents/, accessed at 2023/06/01.



11 0 6

Ikegame, T., Noguchi, Y., Kogure, S., Yamashita, K., Yamamoto, R., Konishi, T. and Itoh, Y.

Instruction Support System Using Impasse Detector and Major Failure Diagnoser for Programming Exercises

Proceedings of the 29th International Conference on Computers in Education

2021

2022

Soma, H., Kogure, S., Noguchi, Y., Yamashita, K., Yamamoto, R., Konishi, T. and Itoh, Y.

Development of Mapping Function between Variable-Value and Object Properties for Program Behavior Visualization Tool TEDVIT

Proceedings of the 29th International Conference on Computers in Education

2021

Y. Noguchi, K. Ayabe, K. Yamashita, S. Kogure, R. Yamamoto, T. Konishi, Y. Itoh

Experimental Design of Automated Extraction for 3-Level Tutoring Support Information in Programming Exercises

Proceedings of the 28th International Conference on Computers in Education

2020




M. Muramatsu, Y. Noguchi, S. Kogure, K. Yamashita, T. Konishi, Y. Itoh

Introducing a Mock Technique into a Learning Support System for Program Design Based on Testability

Proceedings of the 28th International Conference on Computers in Education

2020

Y. Noguchi, S. Nishihata, S. Kogure, K. Yamashita, M. Kondo, T. Konishi

What is the Meaning of My Model - Self-Review Support Environment based on Natural Language Translation from Learners
Software Structural Models -

Proceedings of the 52nd ACM Technical Symposium on Computer Science Education (SIGCSE ‘ 21)

2021

Yasuhiro NOGUCHI, Daiki IHARA, Satoru KOGURE, Koichi YAMASHITA, Tatsuhiro KONISHI & Yukihiro ITOH

Learning Support System for Software Component Design based on Testability

27th International Conference on Computers in Education

2019

44

2019




Testability

88

2020

Testability

ET

2018

Testability

16

2018

(Konishi Tatsuhiro)

(30234800) (13801)




(Yamashita Koichi)

(30340110) (33801)
(Kogure Satoru)
(40359758) (13801)
(Yamamoto Raiya)
(70825116) (33801)




