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Most of mathematical theorems have a form that "for any X satisfying some
condition, there exists some solution Y for X". Such theorems are called "existence theorems". In
computable mathematics, their interrelation has been studied via Weihrauch reducibility.

In this project, we formalized the primitive recursive version of Weihrauch reducibility in
finite-type arithmetic and showed that for any existence sentences P and Q of some syntactical form,
P is primitive recursively Weihrauch reducibile to Q verifiably in a classical finite-type
arithmetic T if and only if P is derivable from Q in the semi-intuitionistic counterpart iT of T
with a proof of the standard structure. Then we established that this meta-theorem is applicable to
many existence theorems by providing several concrete examples. In addition, we showed that the
syntactical restriction in our meta-theorem cannot be avoided by providing a counterexample.
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