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Density Functional Theory (DFT) has achieved great success in quantum

many-body problems in various fields. Its foundation Hohenberg-Kohn theorem guarantees the existence

of a universal energy density functional for given inter-particle interactions but tells us no clue
for getting such a functional. The goal of this project is to develop ab initio nuclear DFT by
taking protons and neutrons as the basic degrees of freedom and starting from the nucleon-nucleon
forces among them. Exploring the following strategies: to develop ab initio DFT (1) from
experimental data, (2) from other ab initio methods, (3) from fundamental interactions, and (4) with
machine learning approaches, we proposed several novel theoretical frameworks and computational
setups. These new developments also achieved accurate descriptions of nuclear properties, including
mass, beta-decay half-lives, shell evolution and its tensor-force effects, and so on.



(1) In nuclear physics, Density Functional Theory (DFT) is one of the state-of-the-art methodologies and
has achieved great success during the past decades. Now as well as in the near future, DFT is the only
approach that is applicable to almost the whole nuclear chart, for both ground states and excited states.

(2) Nevertheless, the foundation of DFT—Hohenberg-Kohn theorem—only guarantees the existence of a
universal energy density functional (EDF) for given inter-particleinteractions but tellsusno cluefor getting
such EDF. In particular, nuclear DFT is not yet derived from more fundamental theories, e.g., QCD.
Basically, all of the existing nuclear EDF are phenomenological, in the sense that each of them contains
around 10 or more parameters fitted to selected experimental data. As a result, there exist hundreds of
different versions of nuclear EDF being widely used, and more serioudly, different EDFs show similar
results in the known region of the nuclear chart, however, their predictions tend to diverge from each other
in the unknown region.

(1) Thegoal of thisprojectisto develop ab initio nuclear DFT, i.e., the nuclear DFT fromthefirst principle,
by taking protons and neutrons asthe basic degrees of freedom and starting from the nucleon-nucleon forces
among them. By carrying out thisproject, weaim at an ab initio nuclear DFT with uncertainty quantification
and without any incontrollable parameters.

(2) Thisab initio nuclear DFT plays an important role in understanding both ground-state and excited-state
properties of thousands of nuclei in a consistent and predictive way. In particular, we also keep working on
the topics of nuclear equation-of-state, masses, f-decay half-lives, giant and low-lying resonances, etc.
These studies provide the most important nuclear inputs for understanding nucleosynthesis via the rapid-
neutron-capture process, the so-called r-process.

(3) Fromthe interdisciplinary point of view, by simply changing from nuclear force to Coulomb interaction,
the newly devel oped theoretical schemes can apply not only to nuclear systems but also to atomic systems,
i.e., ab initio DFT for condensed matter physics and quantum chemistry. Therefore, we share knowledge
and techniques with various fields.

(1) To develop ab initio DFT from experimental data

(2) To develop ab initio DFT from other ab initio methods

(3) To develop ab initio DFT from fundamental interactions

(4) To develop ab initio DFT with machine learning approaches

—See below for the details of each approach.

(1) Todevelop abinitio DFT from experimental data

In his Nobel Lecture [1], Kohn highlighted that “the practical usefulness of ground-state DFT depends
entirely on whether approximations for the functional Ex[n(r)] could be found which are at the same time
sufficiently simple and sufficiently accurate ... Thus if the physical density n(r) is independently known
(from experiment or—for small systems—from accurate, wave-function-based calculations) ve(r) and
hence also vy (r) can be directly obtained from the density n(r).” This is the so-call inverse Kohn-Sham
(IKS) method proposed by Wang and Parr [2]. However, it remains an open question for decades on how
to go one step further from the exchange-correlation potential vi(r) to the exchange-correlation functional

Ex[n(r)].

In our work [3], for the first time, a new way to improve EDFs by the combination of the IKS method and
the density functional perturbation theory (DFPT) was proposed. We named it IKS+DFPT. In this method,
a conventional known EDF is assumed to be close enough to the exact EDF and their difference is
considered in the first-order DFPT. Under the assumptions, we can cal cul ate the system ground-state energy



in two different ways, based on the first-order DFPT and the IK'S method. We then end up with a functional
equation for the difference between the conventional known EDF and the exact EDF.

As benchmark calculations, the ground-state density is 100
calculated from the target (known) EDF and we attempt to
reproduce it from a less accurate EDF. Noble-gas atoms and
Coulomb interaction are used as test grounds. One of the
main results is shown in Fig. 1. It is found that the ground-
state energy becomes closer and closer to the target value as 01
the iteration proceeds. The ground-state energies of He, Ne,

Xe, and Rn are finally reproduced within 0.4%, 0.003%, 0.01,
0.002%, and 0.0003% errors, respectively, compared with r (a.)

28%, 8%{ 2%, and 2% errors before the improvement Qf Fig. 1: Wigner-Seitz radii as functions of radial
EDF. It is aso found that the ground-state density is distance for Rn. Taken from Ref. [3].
improved by theiterations, as shown in the figure.
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To our knowledge, this work accomplished for the first time a practical use of IKS. It paved a direct path
to improving not only Coulomb EDF but also nuclear EDF when the corresponding system ground-state
densities are measured accurately from experiments.

(2) Todevelop ab initio DFT from other ab initio methods

The understanding of nuclear EDF in terms of nucleon-nucleon interaction is one of the present frontiersin
nuclear physics. As manifested by the quadrupole moment of the deuteron, the tensor force is an important
component in the nucleon-nucleon interaction. In the form of the two-pion exchange, the tensor force also
provides the main part of the nuclear attraction, which is taken into account by the scalar & meson in
phenomenological models. However, the role of the tensor force on the spin properties in finite nuclei is
much less clear.
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In the study [4], based on our previous series of works on the
relativistic ab initio calculations with Relativistic Brueckner-
Hartree-Fock theory, we pointed out that the evolution of
spin-orbit splittings in neutron drops shows profound effects
of the tensor forces.
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One of themain resultsisshown in Fig. 2. Itisfound that the
evolution of spin-orbit splittings in neutron drops shows a
systematic and specific pattern due to the effects of the tensor ) :
forces. More importantly, such a pattern cannot be 10 20 30 40 50
reproduced by any relativistic Hartree EDFs which do not Neuitron Number N

contain tenor forces, whileit can be well reproduced with the Fig. 2: Neutron spin-orbit for the 1d orbit as a
relativistic Hartree-Fock density functional PKO1 which ];J:fCtE%n of the neutron number N. Taken from
includes tensor forces. This implies that the strengths of o

tensor forces in neutron drops can be derived from ab initio calculations and used as a guide for future ab
initio derivations of nuclear EDF.

€,4327€ 1452 (MeV)

N WA OO W OO

This study forms an important guide for future microscopic derivations of relativistic and nonrelativistic
nuclear energy density functionals. Our further studies on this topic have been published in Refs. [5, 6, 7,
8].

(3) Todeveop abinitio DFT from fundamental interactions

DFT is a successful approach to reducing quantum many-body problems to one-body problems with the
local density distribution. Due to its high accuracy with relatively low computational cost, DFT has had
great success in various fields. Another successful approach to quantum many-body problems is the
functional renormalization group (FRG). It is based on the one-parameter flow equation which leads to the
guantum effective action at the end of the flow. The combination of DFT and FRG is one of the hot research
frontiers for developing ab initio DFT nowadays.

In our work [9], we propose a novel optimization method of FRG in analogy with the Kohn-Sham (KS)
scheme in DFT, which we call KS-FRG. The convergence of the energy density functional in KS-FRG is
shown to be much faster than the un-optimized scheme. We al so propose a method to estimate the truncation
uncertainty in the KS-FRG.
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Fig. 3: Effective actions as a function of density for (left) intermediate and (middle) strong couplings and (right) ground-state
energy versus ground-state density for the strong-coupling case. Taken from Ref. [9].

One of the main resultsis shown in Fig. 3. By taking the zero-dimension ¢*theory asan example, it isfound
that, in the intermediate-coupling case, an order of magnitude improvement of the accuracy of ground-state
density and ground-state energy is seen by increasing the order of truncation. The third-order cal culation of
ground-state energy reaches O(10%) accuracy in KS-FRG. Even in the strong-coupling case, an order of
magnitude improvement of the accuracy is achieved by increasing the order of truncation. The third-order
results of ground-state density and energy reach O(10°) accuracy, as shown in the right panel above.

This method is a promising candidate for making systematic and fast converging calculations of the
guantum many-body systems, such as the cold atoms near unitarity, nucleons in finite nuclei, and so on.
Our further studies on this topic have been reported in Ref. [10]. As a step further, we are investigating the
(3+1)-dimensional electron gasand finalizing the corresponding formalism and numerical codes of the EDF
with the generalized gradient approximation.

(4) Todevelop ab initio DFT with machine lear ning approaches

On the one hand, in the past few years, developing DFT with machine learning approaches is one of the hot
topics in condensed matter physics and quantum chemistry. On the other hand, in the past years,
independent machine-learning studies were carried out on different nuclear observables to meet the
experimental values, such as nuclear masses, charge radii, excited states, a-decay half-lives, f-decay half-
lives, fission yields, etc. Therefore, machine learning for nuclear DFT is becoming one of the hot topicsin
nuclear physics.

In one of our recent studies [11], we designed a Kohn-Sham I SRS SIS ﬂ\ -
scheme based on a multi-task neura network for the SR 2\
supervised learning of nuclear shell evolution. The training Voot Y
set is composed of the single-particle wave functions and
occupation probabilities of 320 nuclei, calculated by the
Skyrme EDF.

Density (fm™)

One of the main results is shown in Fig. 4, by taking the Pb [—.sincs \\
isotopes as examples, where the most neutron-rich trained R R
nucleus is 2°2Pb, and we extrapolate the neutron and proton
densitiesto 22Pb, 22Ph, and 2%2Pb. It is evident that the novel Fig. 4: Neutron and proton densties for the
K S-scheme-based neural network reproduces the theoretical fx"apo'ated nuclei **2Pb, *#Pb, and **Pb. Taken

. s . . . rom Ref. [11].
density distributions almost identically, even in the
extrapolation of an additional 30 neutrons. In contrast, the extrapolation of the density generator (DG) by
simply learning the densities (without using the idea of KS) appears an obvious deviation in 2?Ph. In
addition, it isalso found in this study that the deduced density distributions, momentum distributions, and
charge radii are in good agreement with the benchmarking results for the untrained nuclei. In particular,
accomplishing shell evolution leads to a remarkable improvement in the extrapolation of nuclear density.
After afurther charge-radius-based calibration, the network evolves a stronger predictive capability.
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This study opens the possibility to infer correlations among observables by combining experimental data
for nuclear complex systems. Our studies on the relevant topics have been published in Refs. [12, 13, 14,
15].

(5) Summary

In summary, during the whole research period, we have published 27 peer-refereed papers for the above
relevant topics. It aso includes one invited review article in Progress in Particle and Nuclear Physics



entitled “Towards an ab initio covariant density functional theory for nuclear structure” [16], presenting
our ideas on ab initio nuclear DFT for the coming decade.
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