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By minimizing trial-and-error, the algorithm will reduce the time required to deposit high-quality

small molecule thin films, and might accelerate the development of organic electronics based upon
small-molecule films.

Organic thin Ffilm structure might be elucidated with our computational method.

i Organic thin films on metallic substrates are widely used as _charge
transport layers in OLEDs (organic light emitting diodes) and other organic electronics.

In this project, we aimed to create a machine learning algorithm which can find the optimal
deposition conditions for creating highly crystalline, small-molecule organic thin films. We
succeeded to collect training data for this algorithm, and confirmed that it spans a wide range of
thin film states (sub-monolayer to multilayer) using scanning tunneling microscopy. However, more
training data is needed to run the optimization algorithm properly. In addition, we created a new

computational method which can, in principle, determine the atomic structure of an organic thin film
from low energy electron diffraction (LEED) data.
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Organic thin films on metallic substrates are widely used as charge transport layers in OLEDs (organic
light emitting diodes) and other organic electronics. In order for such devices to perform efficiently, it is
desirable for the thin film to have a minimal number of traps and defects, as these tend to localize charge
carriers and impede charge transport.

At present, the organic thin films in commercial organic electronics are mainly prepared by spin-casting
or coating polymer molecules. Polymer thin films can be prepared relatively easily and without cracks or
macroscopic defects, however their charge carrier mobilities are usually too small for many applications.

Organic thin films can also be prepared by deposition of small organic molecules. Compared to polymer
thin films, small molecule thin films tend to display much higher charge carrier mobilities. However,
these high charge carrier mobilties usually require highly crystalline thin films. Unfortunately, highly
crystalline small molecule thin films are very difficult to prepare, and considerable time is required to
find the optimal parameters (deposition time, substrate temperature, and so on) leading to high
crystallinity.

2. WFFEOHBY

(Goal 1) Create an algorithm which can quickly find the optimal parameters for depositing highly
crystalline, small-molecule organic thin films under ultra-high vacuum conditions.

By minimizing trial-and-error, this algorithm is expected to dramatically reduce the amount of time
required to deposit high-quality small molecule thin films. If such an algorithm was taken up in industry,
then it might accelerate the development of high-performance organic electronics based upon
small-molecule thin films.

(Goal 2) Create a computational method which can determine the atomic-level structure of
small-molecule organic thin films from experimental electron diffraction data.

The atomic-level structure of an organic thin film must be known in order to clarify charge transport
mechanisms. Low-energy electron diffraction (LEED) provides the most precise information on thin
film atomic structure, however for the case of organic materials (as opposed to metals) there are no
reliable methods for transforming the LEED pattern from reciprocal space to real space.

The combination of Goal 1 and Goal 2 therefore allows us to create highly crystalline small molecule
organic thin films with a known atomic structure.

3. WHEDTE
(Goal 1)

In order to create the algorithm, a machine learning approach based upon Bayesian optimization was
used. For a given organic molecule and substrate, a set of training data was collected. This training data
consisted of thin film deposition time, substrate annealing temperature, substrate annealing time, and
LEED patterns collected at various electron energies. Deposition was performed via molecular beam
epitaxy from a Knudsen cell. A scanning tunneling microscope (STM) was acquired half-way through
this project, allowing us to incorporate STM images into the training data as well. All data was collected
under ultra-high vacuum conditions.

(Goal 2)

Our computational method consisted of a real-space quantum dynamics simulation of an electron pulse
colliding with a surface. By using a surface potential calculated from accurate first-principles
calculations (as opposed to simple localized potentials from other methods), our method is reliable for
the case of organic molecule thin films. Real-space quantum dynamics simulations were performed by
direct integration of the time-dependent Schrodinger equation using an in-house code. Surface potentials
were calculated using density functional theory as implemented in the Vienna Ab initio Simulation
Package (VASP).



4. BFFERR
(Goal 1)

During FY2019, we collected training data for the case of a copper(111) (Cu(111)) substrate and
(9,9°)-bianthracene (bianthracene) deposited by molecular beam epitaxy. Bianthracene is a
representative material for organic electronics, and closely related compounds are used in OLEDs (e.g.,
Se et al. Dyes and Pigments 148, 2008, 329) and for graphene nanoribbon fabrication (Cai et al. Nature
466, 2010, 470). To collect this training data, bianthracene was deposited using various deposition times
(10 seconds to 10 minutes) at various substrate temperatures.

LEED patterns and STM images showed that our training data covered a range of molecular coverages
and thin film thicknesses. Clear STM images showing bianthracene molecules aligned at Cu(111) step
edges could be obtained, indicating that our training data contains cases from the sub-monolayer regime.
Somewhat clear STM images could also be obtained for the cases of multi-layer thin films. These
multilayer thin films appeared to have a laminar structure (with structural order persisting over ~100 nm
distance). While this intrinsic structural order improved with high-temperature annealing, the alignment
was not perfect and no clear LEED pattern could be measured from them. Examples of STM images and
LEED patterns from this training data are available upon reasonable request (at time | writing, we
cannot access this data due to restrictions arising from the COVID-19 epidemic).

In addition to this training data, the basic Bayesian optimization algorithm for analyzing this data is
available and will be used to predict the condition to obtain a highly crystalline monolayer bianthracene
thin film. However, in our training data, we unexpected observe only two behaviors for the LEED
pattern: either the background Cu(111) peaks are completely absent in the multi-layer regime, or are
very intense in the submonolayer regime but change little with increasing coverage. Because
mathematical optimization requires a response variable which varies smoothly with changes in
deposition conditions, the LEED patterns in our training data cannot be used for optimization. While this
finding has delayed the research plan, | am currently investigating whether STM images could be used
in place of LEED patterns for the optimization. Moreover, | am trying to obtain deposit monolayer
bianthracene thin films, from which clearer changes in LEED pattern should be observed. | aim to have

d

C 0.84fs | D 0.89fs|| E 0.91 fs
) B
top side
G H |

side

Figure 1. (A) Electron pulse (red) traveling towards a Cu(111) surface (grey). The time since the beginning of the simulation is
indicated. The insert shows the position of the detector. (B) Structure of Cu(111). Blue spheres are Cu atoms. Dotted lines
indicate unit cell shape. (C — D) Time-dependent electron diffraction pattern for the Cu(111) surface. Red, blue, and white
indicate areas of high, low, and zero intensity, respectively. (F) Configuration of Cu atoms having the same symmetry as
Cu(111) but different atom positions. (G — I) Time-dependent electron diffraction pattern for the structure in (F). Image taken

from Packwood, Sci. Rep. 10, 2020, 5868. See that paper for more details.




this complete before the summer of this year. .

(Goal 2)

Figure 1 (taken from Packwood, Sci. Rep. 10, 2020, 5868) illustrates our electron diffraction simulations
for the case of a bare Cu(111) surface. Figure 1A plots the square amplitude of the electron wave packet
(red) and the surface potential (grey) at various time since the start of the simulation. Figure 1B shows
the structure of pristine Cu(111), and Figure 1C — 1E show the time-evolution of the electron diffraction
pattern as electrons scatter from the surface and pass through the detector. This sub-femtosecond time
evolution cannot be observed in a real experiments, because experimentally the diffraction pattern is
averaged over a long time scale (microseconds to seconds). Figure 1F shows a random configuration of
Cu atoms with the same symmetry as Cu(111), and Figures 1G — 1l show the time-evolution of the
corresponding electron pattern. It can be seen that the two copper structures (1B and 1F) give rise to
distinct time-dependent diffraction patterns (1C — 1E, and 1G — 1I, resp), despite sharing the same
symmetry.

In order to rigorously confirm that time-dependent diffraction (TD-LEED) patterns are indeed sensitive
to the atomic configuration of the surface, we performed electron diffraction simulations for numerous
random Cu configurations and also a chemisorbed thiol-alcohol layer on Au(111). For each system, all
candidate configurations possessed the same symmetry, but differed in the locations of the atoms. By
judicious application of hierarchical clustering analysis, we could confirm that TD-LEED patterns from
both bare metals and organic thin film surfaces are indeed highly sensitive to atomic configuration.

The high sensitivity of the TD-LEED patterns to atomic configurations means that they can be used to
determine organic thin film structure from experimental LEED patterns. Providing that a highly
crystalline organic thin film is successfully fabricated from Goal 1 above, we could measure the LEED
patterns at a variety of energies (this is called the LEED-I(V) method). These LEED patterns can then be
transformed to the time-domain by applying the transformation reported by Yan et al (Yan et al. Phys.
Rev. B. 84, 2011, 224117). Then, by comparing these experimental time-domain images with the
TD-LEED patterns simulated with our method, we will be able to find the atomic configuration which
agrees with the experimental data most closely. Once we obtain a highly crystalline bianthracene thin
film from Goal 1, we proceed in this direction
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