科学研究費助成事業

1版

今和 2 年 4 日現在 6月

	_
機関番号: 11301	
研究種目: 若手研究	
研究期間: 2018 ~ 2019	
課題番号: 18K14242	
研究課題名(和文)分子ローターの2次元高密度集積に伴うキラル反転相転移現象の検証	
附先誄退名(央文)Verification of phase transition with chiral inversion in 2D aggregate of molecular rotors	
研究代表者	
堀井 洋司(Horii, Yoji)	
東北大学・材料科学高等研究所・助教	
研究者番号 · 9 0 8 0 9 4 8 5	
交付決定額(研究期間全体):(直接経費) 3,300,000円	

研究成果の概要(和文):本研究課題では、金属配位サイトを有する分子ローター錯体を合成し、金属イオンの 存在下LB法を用いることで、分子ローター2次元集積体を合成した。AFMを用いた顕微鏡測定では、単分子膜に 相当する厚さの膜状構造を確認しており、目的の構造体が生成していると思われた。また、薄膜の紫外可視吸収 スペクトルでは、金属イオンとの反応前後において吸収スペクトルに明確な変化が見られず、集積後もローター の構造が保たれていることが示唆された。温度可変紫外可視吸収スペクトルにより、分子ローターの協奏的運動 に伴う変化の観測を試みたが、現在までのところ相転移現象を示す証拠は得られていない。

研究成果の学術的意義や社会的意義 本研究では、2次元分子ローターの集積によって、分子機械のミクロな運動が連動しあうことで、キラル反転を 伴ったマクロな相転移へと発展するか検証することを目標とした。これは、単純な運動にとどまっていた分子機 械を連結することで、より複雑な運動を実現しようとする試みであり、これが成功すれば分子機械研究に大きな インパクトを与えうる。研究の過程において、金属配位サイトを有する分子ローター錯体を合成し、LB法を組み 合わせることで、2次元分子ローター集積体の構築手法を開発・実行することに成功した。

研究成果の概要(英文):We synthesized a molecular composed of a rotor unit and a metal-binding site, which enabled us to construct a 2D aggregate of the molecular rotor by LB method in a presence of metal ions. The membrane structure of which thickness corresponded to the height of the rotor molecules was observed by using AFM measurements, indicating the formation of the target substance. UV-Vis absorption spectra before and after the reaction with metal ions are almost identical, indicating that the structure of the rotor was sustained. To observe the correlated motion of the molecular rotors, temperature dependent UV-Vis absorption measurements was conducted. However, no evidence of the phase transition induced by the motion of rotor was obtained.

研究分野: 分子磁性

キーワード: 分子ローター LB膜

研究成果報告書

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。

様 式 C-19、F-19-1、Z-19(共通) 1.研究開始当初の背景

化学合成技術の発展と適切な分子設計の蓄積によって、単一の分子に機械のような運動機能性 を付与することが可能になってきている(Chem. Rev. 2015, 115, 10081)。このような機能を示す分 子は"分子機械"と呼ばれており、2016年のノーベル化学賞の対象となった。一方で、これまでに 報告されている分子機械は、pHや光などの外場により分子変形に伴う運動を示すというシンプ ルな段階にとどまっており、機械というよりは部品に近い。今後、より複雑な機能を分子機械に 付与するにあたり、複数の分子機械を組み合わせた協同的動作が必要とされるのは想像に難く ない。特に、分子ローター(双方向回転を行う分子機械の一種)のギア運動を用いた遠距離への

回転力の伝達(図 1)は、分子間に機械的な相互作用を導入 するうえで適した手法であるが、研究例自体が少ないこと もあり(*Nat. Nanotechnol.* 2017, doi:10.1038/nnano.2017.179)、 ローター間の適切な距離と回転障壁についての情報は不 明なままである。一般的に、分子機械は溶液中など、分子 同士が十分に孤立した場において運動機能性を発現する。 一方で、結晶内部のように分子が密にパッキングした系で は、運動するためのスペースが無いため、その機能を発現 することが難しい。分子ローターが運動可能なスペースを 有しつつ、分子間相互作用と回転障壁を制御できるような 系を構築することができれば、分子ローター同士の協同的 運動について知見を得ることが可能となる。

2.研究の目的

本研究の目的は、上述のような系を構築し、分子ローター の協同的運動を観測することである。図 2a に示すような 分子ローター集積体は、サイズ可変な 2 次元配位高分子 (2D-PCP)の上に、ローターが規則的に配列した構造を有し ている。したがって、2D-PCP のサイズや分子ローターの 種類を変更することで、ローター間の相互作用の強さや回 転障壁の大きさを制御することができる。ローター間に適 切な相互作用が存在する場合、一部のローターのコンフォ メーションが2次元膜全体に伝播し、キラル反転を伴う相 転移現象を誘起すると予想される(図 2b)。本研究では、こ の相転移現象を検出することで、ローターの集団運動を感 知する。2次元物質において、分子のコンフォメーション 変化を基軸とした相転移現象を起こすこと自体が極めて 挑戦的なことである。本研究課題は、これまでにない独自 の物質設計によって、分子ローターの協同運動を解明・利 用し、新奇な物性(キラル反転相転移)を示す物質を創造 しようとする試みである。

3.研究の方法

本研究において用いる系の具体的な合成手法を説明した い。2011 年、牧浦および北川らにより、テトラフェニルカ ルボキシポルフィリン(H2TCPP)および Cu(II)イオンからな る 2D-PCP の合成が報告された(Nat. Mater. 2010, 9, 565)。 Cu(II)イオン水溶液に H₂TCPP の溶液を滴下するというシ ンプルな手法でありながら、生成された膜は頑丈性と高い 結晶性を有している。また、H2TCPP のフェニル基をビフ ェニルへ変換することにより、ネットワークの拡張も可能 である。申請者の提案する合成手法はシンプルで、配位子 として H₂TCPP の代わりに、図 4a に示すような分子ロータ ー錯体を用いることで、2D-PCPを合成する。これら金属錯 体の上下のポルフィリン配位子は回転可能であることか ら、分子ローターとして動作しうる。それぞれポルフィリ ン配位子同士の面間距離が異なっており、面間距離が近け れば近いほど回転に伴う障壁エネルギーが大きくなる。こ こで、一方のポルフィリン配位子にカルボン酸基を導入し 脱プロトン化することで、親水部と疎水部を有する両親媒 性錯体を合成することが可能である。この錯体の希薄溶液 を、Cu(II)イオンを含む水溶液上に静かに滴下することで、 親水部が水溶液側、疎水部が気相に向いた Langmuir 膜を 得ることができる。また、Cu(II)イオンと金属錯体のカルボ ン酸基が組み合わさることで、分子ローターが均一かつ適

図 1. 分子ローター集合体のギア運 動による回転力の遠距離伝達.

図 2. (a) 2 次元ローター集積体の構造 (b) キラル反転を伴う相転移.

図 3. (a) TCPP の構造 (b) 2D-PCP の 合成 (c) 2D-PCP の構造.

度にパッキングした 2D-PCP を得ることが可能となる。

図 4. (a) 分子ローター錯体の例. (b) 2D-PCP の合成と構造.

4.研究成果

まずは、回転部位を有する分子ローター錯体を合成した。図 4a に示したような、鉄ポルフィリンがμ-oxo でつながった二核錯体の合成も試みたが、おそらくは不均化反応のため、精製することができなかった。したがって、希土類イオンがフタロシアニンと TCPP でサンドイッチされた 構造を有する錯体を合成した。

図 5. 分子ローター錯体 LnPc(TCPP)の合成スキーム.

これを、LB 膜生成装置を用いて集積化し、二次元膜の合成を行った。水層に超純水を用いた場合と、Cu(II)イオン水溶液を用いた場合の表面圧プロットを示した。前者の場合は、面積が 100 A2 の領域より表面圧の上昇がみられるのに対し、Cu(II)イオン水溶液を用いた場合は、150 Å² より表面圧の上昇が見られた。一方で、H₂TCPP のみを用いた先行研究では、純粋を用いた場合は 50 Å²、Cu イオン水溶液を用いた場合は 150 Å² より表面圧の上昇が見られている。純水を用いた場合、H₂TCPP では H 会合体のようなスタックが可能であるため、表面圧上昇が小さな面積で起こるが、今回のローター分子では、フタロシアニン配位子の立体障害によって H 会合体が形成されず、大きな面積で表面圧上昇が見られたと考えられる。また、Cu(II)イオン存在下では、H₂TCPP および TbPc(TCPP)の両者とも 150 Å² より表面圧の上昇が見られている。したがって、パドルホイール部位が配位子間のスペーサーとして働いていることを示している。また、H₂TCPP と TbPc(TCPP)で表面積が変わらないことも、足場となる TCPP ユニットが同じであることを考えれば理解できる結果である。

図 6. TbPc(TCPP)および TbPc(TCPP)-Cuのπ-A曲線と2次元膜の予想構造.

上記で作成した薄膜を石英ガラス基板に写し取り、薄膜の吸収スペクトルを測定した。Cu(II)との反応により吸収ピークが若干のブロード化を示しているものの、その形状は有機配位子のみの場合とほとんど同一であり、Cu(II)イオンとの反応後でもローター分子の構造が保持されていることが示唆された。薄膜の温度可変吸収スペクトル用のセルを作成し、測定を行ったが、熱膨張に伴う吸光度の微小な減少しか観測されず、図2にみられるようなオーダー・ディスオーダー

転移の兆候は見られなかった。

マイカ基板上に単層膜を写し取り、その形状を AFM 測定により確かめたところ、膜状の構造体 を確認することができた。膜厚は~3 nm 程度であり、単層膜に相当していると考えられる。今後、 金基板を用いた STM 測定も行い、膜の形状に関して詳細なデータを得る予定である。

図 7. Cu(II)反応前後での2次元膜の吸収スペクトル.

図 8.2 次元膜の AFM 像.

5.主な発表論文等

〔雑誌論文〕 計3件(うち査読付論文 3件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名	4.巻
Yoji Horii, Yuki Kanegae, Kiyonori Takahashi, Akira Fuyuhiro, Mariko Noguchi, Hal Suzuki,	59
Motohiro Nakano	
2.論文標題	5 . 発行年
Solid-State Spin Equilibrium of Ni(cyclam)2 Complex: Magnetostructural Correlations in Two	2020年
Polymorphs	
3.雑誌名	6.最初と最後の頁
Inorganic Chemistry	5418-5423
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1021/acs.inorgchem.9b03735	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Yoii Horii, Keiichi Katoh, Yuii Mivazaki, Marko Damianovic, Tetsu Sato, Liviu Ungur, Liviu F.	-
Chibotaru, Brian. K. Breedlove, Motohiro Nakano, Wolfgang Wernsdorfer, Masahiro Yamashita	
2.論文標題	5 . 発行年
Coexistence of spin-lattice relaxation and phonon-bottleneck processes in Gd(III)-	2020年
phthlocyaninato triple-decker complexes under highly diluted conditions	
3. 雑誌名	6.最初と最後の頁
Chemistry -A European Journal	-
掲載論文のD01(デジタルオプジェクト識別子)	査読の有無
10.1002/chem.201905796	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名 4.巻 Yoji Horii, Marko Damjanovic, M. R. Ajayakumar, Keiichi Katoh, Yasutaka Kitagawa, Liviu Chibotaru, Liviu Ungur, Marta Mas-Torrent, Wolfgang Wernsdorfer, Brian K. Breedlove, Markus Enders, Jaume Veciana, Masahiro Yamashita _ 2. 論文標題 5 . 発行年 Highly oxidized states of phthalocyaninato terbium(III) multiple-decker complexes showing 2020年 structural deformations, biradical properties and decreases in magnetic anisotropy 6.最初と最後の頁 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 査読の有無 10.1002/chem.202001365 有 オープンアクセス 国際共著 オープンアクセスではない、又はオープンアクセスが困難

〔学会発表〕 計6件(うち招待講演 0件/うち国際学会 2件)

1. 光表者名
Voii Horii
2. 発表標題
Notedalary for construction of a 2D constructe of malagular raters
methodology for construction of a 2D aggregate of morecular fotors
3
International Symposium of Structural Thermodynamics for Young Thermodynamicists: ISST-YT(国際学会)
4 . 発表年

2018年

1. 発表者名

Yoji Horii

2.発表標題

Correlation Between Structures and Spin Crossover behaviors in Two Kind of Crystal Polymorphs of [Ni(cyclam)12] Complex

3 . 学会等名

International Conference on Molecule-based Magnets 2018(国際学会)

4.発表年

2018年

1 . 発表者名

Yoji Horii, Marko Damjanovic, Keiichi Katoh, Masahiro Yamashita

2 . 発表標題

Terbium(III) phthalocyaninato multiple-decker complexes in high oxidation states: electronic, structural and magnetic properties

3 . 学会等名

日本化学会 第100春季年会 (2020)

4.発表年 2020年

1.発表者名

堀井 洋司, Marko Damjanovic, 加藤 恵一, Markus Enders, 山 下 正廣

2.発表標題

縦方向に拡張した 共役系オリゴマーの高酸化 状態におけるジラジカル性の発現

3.学会等名 第55回熱測定討論会

第33回款则正訂 調云

4.発表年 2019年

1.発表者名

住田 駿次郎 , 宮﨑 裕司, 堀井 洋司, 中西 亮, 山下 正廣 , 中野 元裕

2.発表標題

DySc2N@C80とSc3N@C80の熱容量と磁気熱異常

3 . 学会等名

第55回熱測定討論会

4 . 発表年

2019年

1 . 発表者名

鈴木 晴 , 堀井 洋司, 宮﨑 裕司, 中野 元裕, 長谷川 翔大, 橋川 祥史, 村田 靖次郎

2 . 発表標題

NO分子を内包した開口フラーレンの低温熱容量

3.学会等名 第55回熱測定討論会

4 . 発表年

2019年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

<u>6.研究組織</u>

-

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----