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Genetic aberrations are frequently present in the ATRX gene in older
high-risk neuroblastoma (NB) patients with very poor clinical outcomes. Its loss-of-function
strongly linked to replication stress (RS) and DNA damage through G-quadruplex (G4) DNA secondary
structures. However, limited information is available on ATRX alteration-related NB tumorigenesis.
We herein knocked out ATRX in MYCN-amplified (NGP) and single copy (SK-N-AS) NB cells with wild-type

(wt) and truncated TP53 at the C terminus, respectively, using CRISPR/Cas9 systems. We revealed
that ATRX depletion in TP53 wt NB cells was associated with an increased frequency of DSBs and a
subsequent RS-induced DNA damage response, which was impaired by the loss of p53 through the
activation of G4 DNA helicases or the FA DNA repair pathway protein, FANCD2. Therefore, it indicates

that p53 deficiency limits ATRX loss-induced RS/and genome instability in NB cells by regulating
DNA repair mechanisms and replication fork stability.
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Neuroblastoma (NB) is the most common pediatric extracranial solid tumor of the
sympathetic nervous system, accounts for 8 - 10% of all childhood cancers and 15% of
deaths from pediatric cancer. The chromatin remodeling factor ATRX is a tumor suppressor
gene, and plays a key role in genome integrity by promoting replication-fork stability
and homologous recombination (HR) DNA repair. Somatic mutations of the ATRX gene are
recurrently present in older patients and advanced stage-NBs. Moreover, its loss of
function facilitates the alternative lengthening of telomeres (ALT) pathway in tumor
cells, and strongly related to DNA damage and replicative stress. However, limited
information is available on ATRX alteration-related NB tumorigenesis. More recently
several findings indicate that ATRX deficiency has been linked to replication stress
and DNA damage by way of G-quadruplex (G4) DNA secondary structure.
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In this study, our primary objective is to analyzing the link between ATRX loss of
function and ALT pathway in NB, which will be remarkable clue for the development of
ALT-related targets, and may contribute to the individualized treatment for high-risk
NB cases.
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To define the role of inactivating ATRX mutations in carcinogenesis, we herein knocked
out (KO) ATRX in MYCN-amplified (NGP) and MYCN single copy (SK-N-AS) NB cells with
wild-type (wt) and truncated 7P53 at the C-terminus, respectively, using CRISPR/Cas9
technologies. Other methods that we used in our study is Telomere PNA FISH, C-circle
analysis, APB assay, Immunofluorescence, Western blot, Agilent 8x60K oligonucleotide
microarrays, gene set enrichment analysis (GSEA), WST-8 assay, colony formation, and
gene knock-down.
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Generation of ATRX KO in NB cells. Targeted genomic deletion within the human ATRX



locus (Figure 1A). Western blots show the depletion of ATRX protein expression in cell
lysates prepared from Cas9 control (Ctrl) and ATRX KO (C-1, C-3, C-4, and C-21) NGP
and (C-1, C-2, and C-3) SK-N-AS cells (Figure 1B).
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ATRX deficiency-related DNA damage response and replication stress are not induced in
TP53 truncated (C terminus) SK-N-AS cells (Figure 3A, B and C).
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p53 deficiency limits ATRX loss-induced replication stress and genome instability
through the FA pathway protein, FANCD2.
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In our study ATRX KO NGP clones proliferated slowly compared to control and became
differentiated but ATRX KO SK-N-AS clones did not. GSEA analysis of microarray data
indicated that gene-set related to DNA double-strand break repair, DNA damage response,
negative cell cycle regulation, G2M checkpoint and, p53 pathway activation were
enriched in NGP clones. By in vitro analysis, ATRX loss results in increased expression
of phosphorylated histone variant H2AX (gamma-H2AX), a canonical marker for double-
stranded breaks, indicating the accumulation of endogenous DNA damage in NGP clones
but not in SK-N-AS clones. Using a monoclonal antibody known to recognize G4 structures
in situ (1H6), we found that ATRX loss promotes G4 accumulation only in 7P53 wt isogenic
ATRX KO NGP clones, suggesting that replication stress occurred at genomic loci prone
to G4 formation. The accumulation of DNA damage activated the ATM/Chk2/p53 pathway,
leading to cell cycle arrest in NGP clones. Interestingly, ATRX loss did not induce
replication stress related to DNA damage response in 7P53-truncated SK-N-AS clones.
Moreover, lentiviral-mediated p53 inactivation abrogated cell cycle arrest and reduced
G4 accumulation in NGP clones. The loss of p53 also induced G4 DNA helicases or Fanconi
anemia group D2 protein (FANCD2) with ATRX deficiency, suggesting that ATRX maintained
genome integrity and p53 deficiency attenuated replication stress-induced DNA damage
in NB cells featuring inactivated ATRX by regulating DNA repair mechanisms and
replication fork stabilization. We also studied the hallmarks of ALT, including ALT-
associated PML bodies and presence of extrachromosomal telomeric DNA (e.g. c-circle)
in these subclones, and found that ATRX loss alone is not sufficient for ALT activation.
This study was published in nature publishing group, * ' Oncogenesis’ journal, 2021.
During our study, we also gathered knowledge about how do telomere abnormalities
regulate the biology of neuroblastoma, and published a review article in MDPI journal,
‘' Biomolecule’ ' , 2021.
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