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Development of In-Hospital Emergency System and Early Warning Score in Japan
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To clarify the in-hospital emergency response system in our country, we
integrated the Rapid Response System (RRS) registry and the In-Hospital Cardiac Arrest registry,
aligning them with the American Heart Association®s registry definitions. We analyzed data from each

facility and provided feedback to facility representatives, comparing their data with national
data. The registry data analysis revealed that early warning scores are also useful for risk
stratification in our country, suggesting that this could be a solution to the current low RRS
activation rate. Additionally, we developed a prognostic model for post-RRS activation using machine
learning, specific to our country. This new machine learning model demonstrated superior predictive

accuracy for mortality or unexpected ICU transfer within 24 hours compared to existing early
warning scores.
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National early warning score
Logistic Regression model
Odds ratio 95%CI p-value
Oxygen saturation 1.36 125 - 148 <0.001
Altered mental status * 1.23 1.14 - 1.32 <0.001
Heart rate 1.21 1.09 - 134 <0.001
Systolic blood pressure 1.12 1.04 - 1.22 0.005
Respiratory rate 1.03 105 - 1.26 0.002
Body temperature 0.92 0.78 - 1.09 0.346
Oxygen supplement 0.91 0.80 - 1.02 0.102
* GCS <15
Classification And Regression Tree model
Sp0, 291%
no yes
Altered mental status Heart rate 540 or =111
no yes no yes
Respiratory rate S8 or 225
no yes
Category 3 Category 4 Category 5
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Category 1 Category 2
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Models Validation Cross validation Hold out
XGB 0.789 0.802 0.798
Random forest 0.791 0.795 0.796
Logistic regression 0.776 0.784 0.785
NEWS 0.696 - -
MEWS 0.660 - -
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