科学研究費補助金研究成果報告書

平成 22 年 3 月 23 日現在

研究種目:基盤研究(A) 研究期間:2007年 ~ 2008年 課題番号:19206004 研究課題名(和文) 窒化物半導体を用いた遠赤外ーテラヘルツ量子カスケードレーザの研究 研究課題名(英文) Research for Far-infrared - Terahertz Quantum Cascade Lasers using Nitride-based Semiconductors 研究代表者 平山 秀樹(Hirayama Hideki) 独立行政法人理化学研究所・テラヘルツ量子素子研究チーム・チームリーダー 研究者番号: 70270593

研究成果の概要:

窒化物半導体超格子を用いることにより、これまで未開拓周波数領域であった 5-12 THz 帯 量子カスケードレーザの開発を行った。原子層レベルで平坦なヘテロ界面を有する GaN/InAlGaN 系無歪超格子量子カスケード構造の作製に成功した。また、GaN/AlGaN 系量 子カスケードレーザ構造を用い、世界で始めて電流注入による窒化物半導体からのテラヘルツ 周波数帯のバンド内遷移発光を実現した。

交付額

(金額単位:円)

115			(亚语十匹,11)
	直接経費	間接経費	合 計
2007 年度	22, 400, 000	6, 720, 000	29, 120, 000
2008 年度	15, 300, 000	4, 590, 000	19, 890, 000
年度			
年度			
年度			
総計	37, 700, 000	11, 310, 000	49, 010, 000

研究分野:工学

科研費の分科・細目:応用物理学・工学基礎 ・ 応用物性・結晶工学 キーワード:テラヘルツ、量子カスケードレーザ、窒化物半導体、金属プラズモン導波路、分 子線エピタキシー、サブバンド間遷移、自然放出光、電流注入

1. 研究開始当初の背景

電波と光波の両方の性質を兼ね備え持つ、 未開拓の光、テラヘルツ(THz)光は、近年、特 定試薬・化学物質・構造等を非破壊かつ安全 に検出するテラヘルツ分光イメージングの 光源として大変注目され、郵便物検査、覚醒 剤・爆発物所持検査、医薬品検査、病理組織 診断等、幅広い分野での利用が急速に進みつ つある。最近、半導体サブバンド間発光を利 用したテラヘルツ帯量子カスケードレーザ が実現され、小型、高効率、高出力、長寿命、 狭線幅テラヘルツレーザ光源として大変に 期待されている。 しかし、量子カスケードレーザは半導体超 格子のサブバンド間発光を利用しているた め、電子-LO フォノン散乱による非発光再 結合確率が大変大きく、GaAs 系等の半導体 を用いた場合、その散乱エネルギーに相当す る 4-10 TH z 帯のレーザ発振が得られない。 この波長帯の欠損はテラヘルツイメージン グの応用範囲を著しく狭める。今後、4-10 THz帯の量子カスケードレーザの開発は大変 重要である。

2. 研究の目的

上記のように、GaAs 系等の従来半導体を

用いた場合、その散乱エネルギーに相当する 4-10 TH z 帯のレーザ発振が得られず、この波 長帯の欠損はテラヘルツイメージングの応 用範囲を著しく狭める。窒化物半導体の電子 -LO フォノン散乱波長帯は 15-22 THz 帯と 高エネルギー側にあるため、もし、窒化物半 導体量子カスケードレーザが実現すれば、こ れまで不可能であった 4-10 THz 帯のレーザ 発振が可能になると考えられる。

窒化物半導体を用いた量子カスケードレ ーザの研究は、いくつかの技術的な困難のた め、いまだ着手されていない。本研究では、 窒化物半導体を用いて量子カスケードレー ザを作製することにより、これまで不可能で あった 4-10 THz 帯を含む遠赤外-THz レー ザ発振を実現することを目的とする。

3. 研究の方法

窒化物半導体を用いた量子カスケードレー ザの実現には、いくつかの大きな技術的ハー ドルが存在する。本研究ではそれらの問題点 を、以下に列挙する方法で克服し、テラヘル ツ量子カスケードレーザを実現する計画であ る。

第一の問題点は、窒化物半導体はイオン性 結晶に近いため、超格子層に強力な自発分 極・ピエゾ電界が発生しポテンシャルが激し く傾き、複雑な量子構造設計が困難である点 である。本研究では、自発分極が極小となる 窒化物混晶の組成を選ぶことにより、量子構 造設計を可能とする計画である。青色—紫外 発光デバイスとしてすでに用いられている、 InGaN (窒化インジウムガリウム) ならびに AlGaN(窒化アルミニウムガリウム)ではピ エゾ電界が大きく、また、内部歪が無い場合 でも自発分極が発生する。一方、我々が長年 扱ってきた InAlGaN 窒化物 4 元混晶を用い ると、超格子の内部電界が大変小さく、InGaN 系量子井戸の数十分の1であることが観測さ れている。したがって、本研究では、 InAlGaN/InAlGaN4元混晶超格子を採用する ことにより、内部自発分極を極小に押さえ、 高効率サブバンド間発光が可能な量子構造 を実現する計画である。

また第二の問題点は、窒化物半導体では電 子-LOフォノン散乱確率がGaAs系半導体な どと比べ数倍大きく、量子効率の低下を招く ことである。この点に関しては、電子-LOフ オノン散乱の高速過程を逆に利用し、THz 発光の基底準位の電子を高速に抜き取り反転 分布を起こしやすくする方法を用いる。この、 電子-LOフォノン散乱による反転分布アシ スト型の量子構造を採用することにより、従 来と遜色無い発光効率を実現する計画である。 また、これらの原理的な問題点に加え、窒

北物半導体超格子の作製技術の開拓が必要で

ある。量子カスケードレーザ実現のためには、 原子層レベルで急峻なヘテロ界面を持つ多層 (2000層程度)超格子の作製が必要である。 そのため、窒化物MBE成長技術を洗練させる 必要がある。特にInAlGaN4元混晶のMBE成 長に関してこれまでその報告例はほとんど無 く、高品質超格子構造の作製は新たな挑戦で ある。これらの技術は、これまで窒化物MBE 成長を長年行ってきた共同研究者の経験を生 かして立ち上げる。

これらの方法を用いて、初めての試みである窒化物半導体量子カスケードレーザを作製し、未踏波長である 4-10 THz 帯を含む、遠赤外-THz 帯のレーザ発振を実現させる。

4. 研究成果

本研究では THz 領域の未踏波長である 5-12 THz 量子カスケードレーザの実現を目 指し、窒化物半導体を用いた QCL の作製を 行った。作製した、窒化物半導体テラヘルツ 帯量子カスケードレーザ(QCL)の概念図を図 1 に示す。

テラヘルツ帯の光利得は、窒化物 GaN/InAlGaN 半導体超格子層のサブバンド 間遷移発光を用いて得る。1 周期あたりの光 利得は、LO フォノン散乱による非発光再結 合により小さいが、量子カスケード構造を 200 周期程度積層し、電子を階段状に遷移さ せることにより、トータルとして必要な光利 得を得る。量子構造は、LO フォノン散乱に よる反転分布アシストタイプを採用した。す なわち、図1に示すように、カスケード構造 の1周期において THz 発光エネルギー準位 と電子-LOフォノン散乱準位を含む3準位 系を形成し、高速の LO フォノン散乱プロセ スにより THz 発光の下準位の電子を効率よ く抜き取ることにより、反転分布を助長する 構造を用いた。この構造を用いることにより、 比較的高い LO フォノン散乱確率を持つ窒化 物半導においても、比較的大きな光利得が得 られると考えられる。

レーザ導波路構造を以下のように形成した。半導体ドーピング層はTHz領域では大きな吸収損失層となるため、ドーピング層を含む誘電体閉じ込め導波路は利用できない。したがってTHz半導体レーザでは、金属プラズモン導波路が、高い光閉じ込め(98%以上)を得るために理想的であるが、その場合、金属層を挟んで半導体を接合するため作製プロセスが煩雑になる。本研究では、片面金属、片面はn型ドーピング層を用いたプラズモン導波路を作製した。この構造を用いた場合、数+%の光閉じ込めと低い導波路損失が得られ、レーザ素子としても十分な特性が期待できる。

これらの原理に基づき、図1の素子構造を 作製した。サファイア基板と高品質 GaN バッ ファーからなるテンプレート、あるいは、低 貫通転位密度の GaN 単結晶基板上に、プラズ モン導波路の下側層となる n-GaN を成長し、 その上に全層厚~10µm の GaN/InAlGaN 超格 子活性層(約 200 周期)を成長した。サンプ ル結晶成長後、塩素系ドライエッチングによ り共振器ストライプを形成し、その後、プラ ズモン導波路の上側金属層と下側電極を形 成し、へき開により共振器ミラーを形成した。 共振器長は 3mm程度とした。また共振器の 片端面に SiO2/Cr/Au 高反射膜を蒸着により 形成した。

出来上がった素子は、TO型マウントに貼 り付け、ワイヤーボンディングにより結線し、 THz-FTIRを用いて電流注入により発光ス ペクトル測定を行った。レーザ動作温度は低 温であることが予測されるため、5..5Kまで 冷却可能なクライオスタットを用いて測定 した。

図1、作製した窒化物半導体テラヘルツ量子 カスケードレーザ構造

C 軸方向に成長された窒化物半導体ではピ エゾ電界による強い自発分極が生じるため、 超格子の電界が大きく傾き量子構造の設計 が大変難しい。本研究では内部電界をできる だけ少なくするために GaN/InAlGaN を用い た無歪超格子による OCL 活性層を初めて提 案した。GaN 系 OCL は初めての試みであり、 レーザ発振が可能な OCL 構造の設計はまだ 行われていない。本研究ではまずシミュレー ション計算によって窒化物半導体 QCL の発 振が可能かどうかの検証を行った。図2に GaN 系 QCL の動作時のバンドプロファイル の解析結果を示す。各量子準位の波動関数か ら、各準位間の電子-電子散乱、電子-LOフォ ノン散乱確立を求め、THz 発振準位間で反転 分布が起こるかどうかの検証をおこなった。 その結果、閾値電流密度は大きくなるものの、 発振動作が可能であることが GaN 系量子カ スケード構造で検証された。

図 2、GaN 系 QCL の動作時のバンドプロファ イルの解析結果

設計した GaN/InAlGaN 超格子構造を作製 するために、我々は窒化物半導体専用の RF-MBE 結晶成長装置を構築し、GaN および InAlGaN 混晶の高品質結晶成長を行った。成 長温度を変化させることによって InAlGaN 混晶中の In 組成を制御できることを見出し、 適切な成長温度を用いることで GaN に格子 整合した InAlGaN 薄膜が形成できることを 明らかにした。図3にRF-MBE 法によって作 製した GaN/InAlGaN 超格子構造の断面透過 電子顕微鏡(TEM)像を示す。原子1層の精 度で制御された急峻なヘテロ界面を持つ超 格子が形成された。

図 3、作製した GaN/InAlGaN 系 QCL の断面 TEM 像

GaN/InAlGaN 系無歪超格子の MBE 成長に おいて、In の組成制御は欠かせない。MBE 方で InAlGaN を成長した例はこれまでほと んどないため、本研究で、InAlGaN の In 組成 制御を行った。図 4 に MBE で成長した InAlGaN のX線回折測定結果の成長温度依存 性を示す。成長温度を 700℃から 900℃まで 変化させることにより Al 組成を変化させる ことなく、In の組成を 0~19%の範囲で制御 することに成功した。この方法を用いて GaN/InAlGaN 無歪超格子の作製を行った。

図4、MBE で成長した InAlGaNのX線回折 測定結果の成長温度依存性

作製した GaN 系 QCL 構造に電流注入を行 い THz 発光の観測を試みた。観測結果を図5 に示す。パルス電流注入を行い、FFT アナラ イザーを用いパルス周波数に対応するシグ ナルの観測を行った。THz 光の観測は 4K に 冷やした Si ボロメーターを用いた。温度 20K において、電流 8A 注入時に発光が観測され、 FTIR 測定を行うことにより発光周波数は 1.4 THz であることが分かった。また、発光スペ クトルの半値幅から自然放出光であると考 えられる。

GaN 系超格子からの電流注入バンド内遷 移発光はまだ報告例が無く、本結果は初めて 窒化物半導体 QCL 実現の可能性を示す結果 である。今後、結晶の高品質化、量子構造、 素子構造の最適化等を順次行うことにより、 高強度窒化物バンド内発光と THz 帯レーザ 発振を実現していく予定である。

図 5、FFT アナライザーによる低温 20K にお ける GaN/AlGaN 系 QCL 構造からの電流注入 発光の確認

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

W. Terashima and H. Hirayama: "Design and fabrication of terahertz quantum cascade structure based on III-Nitride semiconductors", Physica Status Solidi (c), 6(S2), S615-S618 (2009).査読有

L Ying, N. Horiuchi and H. Hirayama: "Ag-metal bonding condition for low-loss double-metal waveguide of terahertz quantum cascade laser", Jap. J. Appl. Phys., 47(10), 7926-7928 (2008).査読有

〔学会発表〕(計15件)

Terashima W. and Hirayama H. : "Investigation of quantum cascade lasers based on III-nitride semiconductors in the terahertz frequency range", 33rd International Conference on Infrared and Millimeter Waves, 16th International Conference on Terahertz Electronics (IRMMW-THz 2008), Pasadena California, Sept. (2008).

Hirayama H . : "Development of Deep-UV and terahertz semiconductor emitting devices and their applications (invited)", 13th International Micromachine/ Nanotech Symposium , Tokyo , July (2007).

〔図書〕(計1件) 平山秀樹:"量子カスケードレーザによる中赤 外、テラヘルツ波の発生"、平成18年度光技 術動向調査、pp.375-380 (2007). 〔産業財産権〕 〇出願状況(計0件)

〔その他〕 新聞報道(計1件) 日刊工業新聞、"独創研究集団、理研の最前線、 量子カスケードレーザへの期待"、2008 年 8 月5日.

6.研究組織
(1)研究代表者
平山 秀樹 (Hirayama Hideki)
独立行政法人理化学研究所・テラヘルツ量子
素子研究チーム・チームリーダー
研究者番号: 70270593

(2)研究分担者
 寺嶋 亘 (Terashima Wataru)
 独立行政法人理化学研究所・テラヘルツ量子
 素子研究チーム・研究員
 研究者番号: 30450406

池田 典明 (IkedaNoriaki) 独立行政法人理化学研究所・テラヘルツ量子 素子研究チーム・研究員 研究者番号:90267477