科学研究費補助金研究成果報告書

平成 22 年 5 月 21 日現在

研究種目:基盤研究(B) 研究期間:2007~2009 課題番号:19310044 研究課題名(和文) 木質系バイオマスを原料とするクリーンディーゼル燃料製造システムの 開発 研究課題名(英文) Development of a production system of clean diesel fuel from woody biomass 研究代表者 大塚 康夫 (OHTSUKA YASUO) 東北大学・多元物質科学研究所・教授 研究者番号:20091663

研究成果の概要(和文):木質系バイオマスを触媒ガス化し、生成する粗ガスを精製後、クリーンなディーゼル燃料の製造システムの開発を目指して研究を行い、低コストの石灰水や天然ソーダ灰がガス化触媒として有効であり、ガス中のタールやアンモニアの除去には天然の褐鉄鉱が高い触媒活性を示すことを明らかにし、少量のA1を導入したメソポーラスシリカに担持したコバルト触媒が、ディーゼル燃料の高収率製造を実現できることを実証した。

研究成果の概要 (英文): The present work has shown that lime water and natural soda ash are effective as the catalysts for the gasification of woody biomass, and that inexpensive limonite ores can catalyze removal reactions of tar and ammonia in fuel gas produced from biomass. Further, cobalt catalysts, which are impregnated with mesoporous silica supports with low Al contents, can realize efficient production of super clean diesel fuel.

交付決定額

, .			(金額単位:円)
	直接経費	間接経費	合 計
2007 年度	6, 200, 000	1, 860, 000	8, 060, 000
2008 年度	4, 800, 000	1, 440, 000	6, 240, 000
2009 年度	2, 900, 000	870, 000	3, 770, 000
年度			
年度			
総計	13, 900, 000	4, 170, 000	18, 070, 000

研究分野:複合新領域 科研費の分科・細目:環境技術・環境材料 キーワード:環境負荷低減技術

1. 研究開始当初の背景

現在、世界の一次エネルギーの約8割は、 石油・石炭・天然ガスで占められ、その利用 に伴う地球環境問題や、これらの化石エネル ギー特に石油の資源的制約がクローズアッ プされている。これに対して、木質系バイオ マスに代表されるバイオマス資源は、適切に 用いればカーボンニュートラルとなるため、 持続可能なエネルギー源として期待され、さ まざまな利用法の研究開発が工業先進国を 中心に進められているが、新たな視点に立脚 したシステムの構築が求められている。

一方、現在おもに天然ガスから製造される
 合成ガス(H₂/CO)を原料とする GTL(Gas
 To Liquid)技術は、硫黄・窒素・芳香族を含
 まないクリーンな非石油系輸送用燃料の合

成を可能にするため、環境とエネルギーの両 面から脚光を集めている。GTL 法は、米国エ ネルギー省の Vision 21 の最重要課題に掲げ られているように、21 世紀における最も戦略 的な技術と認識され、わが国も独自に技術開 発を進めており、低品位天然ガスを原料とす るデモンストレーション用 GTL プラントの 建設が計画されている。しかし、バイオマス を利用するものは国内外を問わず未だ無い。

2. 研究の目的

本研究では、環境負荷の低減技術と持続可 能なエネルギー資源の開発の観点から、低コ スト触媒を用いて木質系バイオマスをガス 化し、生成する粗ガスを改質・精製後、主要 な GTL 技術のフィッシャー・トロプッシュ (FT と略)合成法により、硫黄・窒素・芳 香族を全く含まないスーパークリーンなデ ィーゼル燃料を製造するためのシステムの 構築を目標とする。

3. 研究の方法

(1) 安価な原料を用いる木質系バイオマス の触媒ガス化: バイオマスには、北海道で 大量に排出されるカラマツ間伐材のおがく ずを 0.5 mm 程度に粉砕して用いた。炭素と 水素はそれぞれ 49.8 と 5.4 mass %で、灰分 は 0.1 mass %以下であった。触媒原料には、 石灰水 (Ca(OH)₂)、褐鉄鉱(主成分はゲーサ イト(α -FeOOH))、天然ソーダ灰(主成分の Na₂CO₃含有量は> 99 mass %)を使用し、イオ ン交換法また物理的混合法で担持した。固定 床反応管に充填した試料を、不活性ガスで希 釈した水蒸気または CO₂を用いてガス化し、 タールを回収後、生成ガスはマイクロガスク ロマトグラフ(GC)でオンライン分析した。

(2) 生成ガスの精製: 粗ガス中のタールの 改質と NH₃の分解には、上述のガス化触媒を 用いたが、後者では、カナダ産バイオマスよ り製造した活性炭に Fe または Ni 塩を含浸担 持したものも使用した。石英製の充填層型反 応管を用い、おがくずの熱分解で発生したタ ール、そのモデル化合物(450 ppm トルエン または 2600 ppm ベンゼン)、NH₃ ガス(2000 ppm)を触媒層に流通し、発生するガスをマ イクロ GC や光音響型 IR センサーで分析した。 共存ガスには、不活性な He、H₂/H₂0、もしく は、バイオマスの固定床ガス化で生成する燃 料ガスをシミュレートしたものを用いた。

(3) FT 合成によるディーゼル燃料の製造: 触媒担体には、従来のアモルファスシリカと は異なり、均一で規則正しい細孔径分布を持 つメソポーラスシリカ(SBA-15)を合成して 使用した。実際の触媒調製では、TEOS、 AlCl₃·6H₂O、EO₂₀PO₂₀EO₂₀を用いて、平均細孔 径が同程度で A1/Si 比の異なる 4 種類の A1-SBA-15 を合成し、Co イオンを incipient wetness 法で担持(10 mass %)した。高圧 FT 反応は、ステンレス製固定床装置を使用し、 $H_2/C0 比 2.0, 2.0$ MPa の条件で行い、生成物 をマイクロGC とキャピラリーGC で定量した。

4. 研究成果

(1) 木質系バイオマスの触媒ガス化

3 種類の触媒は、400~600°C での H₂0 (ま たは CO₂) 中において、いずれもおがくずチ ャーのガス化を促進したが、効果の序列は褐 鉄鉱<石灰水<天然ソーダ灰の順となり、低 炭化度炭をガス化したときと同様であった。 これは、石灰水の Ca²⁺イオンや天然ソーダ灰 中の Na⁺イオンが、リグニン中のフェノール 性 OH 基のプロトンとイオン交換し、これら の金属イオンが高い触媒活性を示すものと 考えられる。次に、石灰水と天然ソーダ灰よ り Ca²⁺イオンと Na⁺イオンを共担持したとこ ろ、それぞれ単独より大きな触媒効果が得ら れたが、複合作用は認められなかった。

500°CでH₂0ガス化後の残渣チャーの粉末X 線回折(XRD)測定を行ったところ、褐鉄鉱 と石灰水を用いた場合には、それぞれFe₃0₄ と CaCO₃が観測されたが、これに対して、天 然ソーダ灰では、Na種による回折線は検出さ れず、Na触媒はガス化過程でも高分散状態が 維持されることが明らかとなった。この触媒 の特長は、Fe₃0₄とCaCO₃では不可避的に進行 する粒子凝集が起こりにくい点であり、さら に、灰分が極端に少ないバイオマス(本試料 では 0.1%以下)では、石炭のガス化と異な り、Na種と灰中のSiO₂との反応による触媒活 性の低下の可能性も無視できることである。

(2) 生成ガス中のタールと NH₃の除去 ① タールの改質・除去: 予想されたよう に、おがくずのみをガス化した場合には、多 量のタールが発生した。そこで、充填層型反 応器の上段でおがくずを熱分解し、発生した タールを下段の触媒層に通したところ、褐鉄 鉱が最も大きなタール除去効果を示した。

この触媒の作用機構を解明するため、ター ルのモデルにベンゼン($C_{e}H_{6}$)を用い、燃料 ガス(20% H₂/26% CO/20% CO₂/5% CH₄/15% H₂0/He)中で実験を行ったところ、 α -FeOOH を多量に含む褐鉄鉱が700°Cでほぼ100%の 除去率を実現した。実際的観点から、褐鉄鉱 の機械的強度を向上させる目的で、市販のハ ニカム上にコートしたところ、同様の高い効 果を示した。XRD 測定結果より、 α -FeOOH よ り生成したナノオーダーの金属鉄粒子の触 媒作用に基づくものと結論された。一方、 α -FeOOH 試薬を単独で使用した場合には、著 しい粒子凝集が起こり、活性は急激に低下し、 ハニカム担体の有効性が立証された。 次に、反応過程を明らかにするため、C0、 C0₂、CH₄を含まない参照ガス(45%H₂/15% H₂0/He)中でトルエン(C₆H₅CH₃)の分解を行った。その結果を図1に示す。転化率は500 ~800°Cでは100%であった。主生成物は温 度に依らずメタン(CH₄)で、500°CではC₆H₆ が認められたが600°Cでは消失し、700°Cに なるとC0が現れ、その収率は高温ほど大き くなった。C₆H₅CH₃の代わりにC₆H₆を流通した

図1 トルエン分解時の生成物の温度依存性

ところ、 500° C ではそのほとんどが CH₄に転化 した。したがって、褐鉄鉱上での C₆H₅CH₃の分 解は、C₆H₆→CH₄→CO の経路で反応が進行する ことが明らかとなった。

② NH。ガスの分解・除去: 木質系バイオマス中に含まれる有機窒素は、ガス化時にはおもに NH。に変化して燃料ガス中に残留するため、事前に除去する必要がある。これまでの研究代表者らのこれまでの結果より予測されたように、褐鉄鉱は石灰水や天然ソーダ灰に比べ、不活性ガス中で高い NH。分解活性を示したので、詳細に検討した。

図2は、さまざまな組成の燃料ガスをシミ ュレートした雰囲気中での褐鉄鉱の触媒効 果を表す。750°CでのNH₃のN₂への分解率は、 低濃度合成ガス(20 % CO/10 % H。)中では時 間とともに急激に低下するが、3 % H₂0 の共 存下では 100 min 程度でほぼ定常の 90 %に達 した。一方、石炭の酸素吹き噴流床ガス化で 生成する高濃度合成ガス(50 % CO/25 % H。) 中での分解率は、H₀0 や CO₂を共存させても 70%程度にとどまった。これは、COからの炭 素析出は合成ガス濃度が高いほど起こりや すいためであり、実際、炭素の生成が観測さ れた。つまり、褐鉄鉱は、バイオマス由来の 低濃度合成ガスを主成分とするガス中の NH₃ の除去に有効であることが明らかとなった。 また、褐鉄鉱に少量のアルカリ土類塩を添加 すると、炭素析出が著しく抑制され、高い活 性が持続されることも判明した。

図3は、カナダ産バイオマス由来の活性炭 に担持した遷移金属触媒の不活性ガス中の

図3 750°C での金属触媒の NH₃分解性能

NH₃分解活性を示す。Fe の効果はNi より大き く 10 h 後も安定しており、分解率は約 90 % に上った。しかし、低濃度合成ガスを含む燃 料ガス (15 % CO/10 % H₂/11 % CO₂/2.9 % CH₄) 中では、Fe 触媒の活性は低下し、特に H₂0 共 存下では顕著となった。この点は、実際上克 服されなければならない課題である。

上述のタール分解の結果も総合すると、低 コストの天然の褐鉄鉱は、バイオマスのガス 化で得られる燃料ガスの高温精製に非常に 優れた性能を発揮することが実証された。

(3) FT 合成によるディーゼル燃料の製造
 ① 新規な Co/A1-SBA-15 触媒の創製: 本研究では、従来のアモルファスシリカとは異なるメソポーラスシリカ(A1-SBA-15)を合成して、Co 触媒の担体に用いた。

図4に、A1/Si比が0-0.083の4種の担体と、これらに10%Coを担持した触媒の細 孔径分布を示す。担体の平均細孔径は5.5-5.6 nmと同程度で、BET表面積はいずれも500 m²/g前後であった。図4に見られるように、

図4 4種類の担体とCo触媒の細孔径分布

Coイオンを含浸して空気焼成しても、細孔径 分布はほとんど変化しなかったが、その容積 と表面積は幾分小さくなり、Co種の大部分が メソ細孔内に保持されたことを示した。

図 5 は、4 種の担体の固体 ²⁷A1-MAS-NMR 測 定結果を表す。A1 イオンの大部分は、SBA-15 の SiO₂ 骨格内の 4 配位 A1 で存在することが 明らかとなった。次に、これらの担体の NH₃-TPD 測定を行ったところ、主ピークは A1/Si 比に依らず 360°C 付近に出現し、4 配 位 A1 に基づく酸点の形成が示された。約 590 °C にもショルダーが認められ、SiO₂ 骨格外の 6 配位 A1 に由来する酸点も現れた。酸量は A1/Si とともに大きくなったが、Coを担持し

図5 4種の担体の²⁷A1-MAS-NMR プロファイル

てもほとんど変化しないことが確認された。 さらに、XRD、TPR、XPS 測定を行った結果、 焼成後の Co 種はいずれの場合も Co₃O₄ で存在 し、その分散状態や還元性も触媒間でほとん ど差異は認められなかったが、XPS より求め た表面 Co/Si 比は、A1/Si が 0.044 で最大と なることが判明した。

 Co/A1-SBA-15 触媒の FT 性能: 図6に、
 W/F が 1.6 g·h/mol、240°C、2.0 MPa の条件 で FT 合成を行った時の CO 転化率または TOF (Turn Over Frequency)と、担体中の A1/Si 比の関係を示す。転化率と TOF はいずれも A1 導入により大きくなり、前者は A1/Si 比 0.01 で最大の約 60 %に達し、A1 無添加時の 2 倍 以上となった。Co 担持量をさらに増やすこと ができれば、転化率の向上が期待できる。

図6 CO転化率またはTOFとA1/Si比の関係

これに対して、ディーゼル留分の主成分で ある C₁₀~C₂₀炭化水素の収率は、A1/Si に依ら なかったものの、ワックス分(C₂₁+パラフィ ン)は、A1 導入により 1/5 以下に減少した。 これは、担体内に形成された酸点上でワック ス留分が軽度に分解されることが強く示唆 する。反応過程で細孔内に蓄積される液体状 のワックスは、金属 Co 上への合成ガスの拡 散速度を小さくし、その結果、触媒活性の低 下をもたらすので、ワックスの in situ クラ ッキングが起こることは、非常に興味深い。 以上のように、A1-SBA-15 担持 Co 触媒は、 ディーゼル燃料の空時収量の向上を実現し、 新規な FT 合成触媒の開発に成功した。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計3件)

- C. C. Xu, J. Donald, E. Byambajav, <u>Y.</u> <u>Ohtsuka</u>, Recent advances in catalysts for hot-gas removal of tar and NH₃ from biomass gasification, Fuel, 査読有, 89, 2010, In press
- ② J. Donald, C.C. Xu, <u>H. Hashimoto</u>, E. Byambajav, <u>Y. Ohtsuka</u>, Novel carbon-based Ni/Fe catalysts derived from peat for hot gas ammonia decomposition in an inert helium atmosphere, Appl. Catal. A: General, 査読有, 375, 2010, 124-133
- ③ Y. Ohtsuka, N. Tsubouchi, T. Kikuchi, <u>H. Hashimoto</u>, Recent progress in Japan on hot gas cleanup of hydrogen chloride, hydrogen sulfide and ammonia in coal-derived fuel gas, Powder Technol., 査読有, 190, 2009, 340-347

〔学会発表〕(計6件)

- 高橋里子,<u>菊地毅光</u>,<u>大塚康夫</u>,J. Donald, C.C. Xu,バイオマスタールのモ デル化合物の分解に対するリモナイトの 触媒性能,第5回バイオマス会議,東京, 2010年1月20日.
- ② Y. Ohtsuka, Y. Takahashi, <u>T. Kikuchi</u>, FT synthesis with cobalt catalysts on mesoporous Al-SBA-15 supports with different Al/Si ratios, The 12th Japan-Korea Symposium on Catalysis, Akita, October 16, 2009.
- ③ C.C. Xu, J. Donald, <u>H. Hashimoto</u>, E. Byambajav, <u>Y. Ohtsuka</u>, Ammonia decomposition with metal catalysts supported on Canadian peat-derived carbons, The 8th World Congress of Chemical Engineering, Montreal, Canada, August 22, 2009.
- ④ Y. Ohtsuka, J. Donald, E. Byambajav, <u>H.</u> <u>Hashimoto</u>, <u>T. Kikuchi</u>, C.C. Xu, Utilization of limonite ores in catalytic cracking of tar model compounds for hot gas cleanup in biomass gasification, The 10th Japan-China Symposium on Coal and C₁ Chemistry, Tsukuba, July 28, 2009.
- ⑤ J. Donald, C.C. Xu, E. Byambajav, Y. <u>Ohtsuka</u>, Characterization of Fe and Ni catalysts supported on Canadian peat-derived activated carbons and their performance in the decomposition of ammonia gas for hot gas cleanup, 第 45 回石炭科学会議, 京都, 平成 20 年 10 月 9 日.
- ⑥ <u>N. Tsubouchi, H. Hashimoto, Y. Ohtsuka,</u> High Performance of Limonite-Based

Composite Catalysts in the Decomposition of Ammonia in a Simulated Syngas-Rich Fuel Gas, Twenty Fifth Annual International Pittsburgh Coal Conference, Pittsburgh, USA, October 1, 2008.

- 6. 研究組織
- (1)研究代表者
 大塚 康夫(OHTSUKA YASUO)
 東北大学・多元物資科学研究所・教授
 研究者番号:20091663

(2)研究分担者
 菊地 毅光(KIKUCHI TAKEMITSU)
 東北大学・多元物資科学研究所・助教
 研究者番号: 30169825

山田 哲夫 (YAMADA TETSUO) 北見工業大学・工学部・准教授 研究者番号:40091558

(3) 連携研究者
 坪内 直人 (TSUBOUCHI NAOTO)
 東北大学・多元物資科学研究所・助教
 研究者番号:90333898

橋本 裕之(HASHIMOTO HIROYUKI) 東北大学・多元物資科学研究所・技術職員 研究者番号:80375170