様式 C-19

科学研究費補助金研究成果報告書

平成22年 3月 12日現在

研究種目:基盤研究(B)
研究期間:2007 ~ 2008
課題番号:19360164
研究課題名(和文) 原子層成長ゲート絶縁膜を有する Ge 高信頼性トランジスタの研究
研究課題名(英文) Research of reliable Ge transistor having atomic layer deposited
gate dielectrics
研究代表者 中島 安理 (NAKAJIMA ANRI)
広島大学・ナノデバイス・バイオ融合科学研究所・准教授
研究者番号:70304459

研究成果の概要:

tetrakis diethylmethylamino hafnium (TDEAH)と H₂0 の交互照射を用いた Ge 基板上への HfO₂の原 子層成長 (ALD) 法の確立を行った。ラザフォード後方散乱による組成分析、原子間力顕微鏡によ る膜平坦性の評価を行い、化学量論的な組成を持つ平坦な HfO₂ 膜が得られる条件を見出した。 MIS キャパシタの容量-電圧特性とゲートリーク特性を測定し、電気的にも良好なゲート絶縁 膜が得られている事を確認した。これにより、ALD 法により堆積したゲート絶縁膜を有する Ge 高信頼性トランジスタの実現の見通しができた。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	11, 200, 000	3, 360, 000	14, 560, 000
2008 年度	3, 200, 000	960, 000	4, 160, 000
年度			
年度			
年度			
総計	14, 400, 000	4, 320, 000	18, 720, 000

研究分野: 工学 科研費の分科・細目:電子電気工学・電子デバイス・電子機器 キーワード:Ge 基板 MOS トランジスタ 原子層成長 ゲート絶縁膜 信頼性

1. 研究開始当初の背景

高度情報化社会の進展に伴い現在超高密 度集積回路(ULSI)の高機能化・高集積化が 益々求められており、MOS トランジスタの更 なる高性能化と高信頼性化が不可欠である。 従来トランジスタの高性能化は Si 構造の微 細化により実現されてきたが、最近 Ge 基板 や SiGe 基板を用いたトランジスタに代表さ れる様に、異種材料の導入による検討も真剣 になされ始めた。バルク Ge は、室温での電 子移動度が Si の 2.6 倍、ホール移動度が Si の4.2倍大きく、高速動作が期待できる。し かし Ge 基板上への信頼性の高いゲート絶縁 膜の形成については、界面での多量の欠陥の 存在等の多くの問題があり、研究開始当初に おいては国内外で報告され始めたばかりで あった (例えば Wu et al., "Effect of surface NH₃ anneal on the physical and electrical properties of HfO2 films on Ge substrate, " Applied Physics Letters Vol.84, pp.3741-3743 (2004))。また、その 他の GeMOS トランジスタ作製のための要素技 術についても、まだ十分には確立されていな かった。

2. 研究の目的

本研究の目的は、将来の高性能デバイスと して期待される Ge 基板を用いた MOS トラ ンジスタの作製方法を確立する事である。特 に、Ge 基板上への高信頼性ゲート絶縁膜を 作製する技術の開発とその電気特性・信頼性 の評価及びソース/ドレイン上に Ge 金属化合 物を形成し金属電極とのコンタクト抵抗を 低減する技術等の要素技術の確立を通して、 高性能・高信頼性 GeMOS トランジスタを実 現する事である。

3. 研究の方法

tetrakis diethylmethylamino hafnium (TDEAH)と水蒸気の交互照射を用いて Ge 基 板上への HfO₂ についての原子層堆積 (ALD) 法の開発を行った。**また、**SiCl₄と NH₃ による ALD を用いた Ge 上への Si 窒化膜の堆積も行 った。

4. 研究成果

図1は、HF ラストのGe 基板に HfO₂を ALD 法により 20 サイクル堆積する前後での原子 間力顕微鏡による表面モルフォロジーである。 表面粗さのrms は堆積前が 0.27nm で堆積後が 0.30nm であり、表面粗さは堆積の前後でほと んど変化しない事が判る。

ラザフォード後方散乱 (RBS) 法により、Ge 基板上に ALD 法で 20 サイクル堆積した HfO₂ 膜の化学組成を調べた。図2は、RBS 法によ り得られた HfO₂堆積膜に対する Hf, Ge, 0 濃度

の深さ方向依存性である。図より HfO2膜の表 面からHf02層とGe0x界面層の境界までの厚さ は1.98nmであり、GeO,界面層の厚さは0.26nm である事が判る。また、表面から 0.75nm から 1.5nmの厚さのHf0,層のHfと0の原子数の割 合は約1:2であり化学量論的である事が判 る。しかし、Hf02層の表面に近い領域は比較 的多くの Ge 原子を含んでおり、また、GeO_x 界面層にも比較的多くの Hf 原子を含んでい る事が判る。これは ALD による HfO2の堆積中 に Ge と Hf の拡散が生じている事を示唆して いると考えられる。また、Hf0,層の表面から 0.75nm までの深さの領域では、拡散した Ge が酸化されていると考えられる。図2におい て、この領域で0原子が過剰に存在している 理由はこのためであると考えられる。これに 対して、Si 基板上への ALD による HfO2 膜にお いては堆積膜全体について化学量論的であり、 膜表面付近においても過剰な0は観測されな 12

図3に ALD 法で Hf0₂を形成した場合の膜 厚の ALD サイクル数依存性を示した。膜厚は サイクル数に比例している事が判り、その傾 きから堆積レートは0.09nm と見積もれる。図 3におけるY軸切片からGe0_x界面層の膜厚は 0.2nm と見積もられ、図2における RBS の結 果とほぼ一致した。この堆積の特性は、Si 基 板上の ALD 法による堆積の場合と類似してい る。この事により、Ge 基板上の ALD 法による Hf0₂の堆積はSi 基板上の場合と同様に、レイ ヤーバイレイヤーの自己停止機構を有してい ると考えられる。

図3には、基板温度400℃においてALD 法でSi 窒化膜をGe基板上に堆積した場合の 膜厚のALDサイクル数依存性も示した。膜厚 はサイクル数に比例している事が判り、その 傾きから堆積レートは 0.055nm と見積もれる。 図3におけるY軸切片からGeO_x界面層の膜厚 は 1.0nm と見積もられる。

図4(a)はA1/Hf0₂/p-Ge MIS キャパシタの 300、500、1000KHz における容量-電圧(C-V) 特性である。Hf0₂は40 サイクル ALD により堆 積しており、エリプソにより測定した物理膜 厚は3.8nm である。C-V 特性は比較的大きい ヒステリシスと周波数依存性を示している。 300KHz における負電圧側から正電圧側への掃 引の場合と正電圧側から負電圧側への掃引の 場合のフラットバンド電圧(V_{fb})シフトは、 0.15V である。測定周波数の増加に伴って、 V_{fb} は負電圧方向にシフトし、蓄積容量は多少 低下する。これに比べて、Si 基板上の ALD HfO₂ ゲート絶縁膜は C-V 特性においてヒス テリシスも周波数依存性も示さない。Ge 基板 における MIS キャパシタの C-V 特性は、Ge 基板上の Hf0₂は膜の品質が Si 基板上の Hf0₂ 膜に比べて劣っているためと考えられる。こ れは Ge 基板上へ堆積した Hf0₂が Ge の拡散に よる可動イオンと不安定な自然酸化膜による 界面準位を含むためであると考えられる。 300KHz における蓄積容量から得られた酸化膜 換算膜厚(EOT)は 2.4nm である。

図4(b)はA1/Si 窒化膜/p-Ge MIS キャパ シタの200、300、500KHz における C-V 特性 である。Si 窒化膜は基板温度 350℃での70 サ イクル ALD により堆積しており、エリプソに より測定した物理膜厚は 3.9nm である。C-V 特性はHf02膜 MIS キャパシタに比べて大きな 周波数依存性を示している。300KHz における 蓄積容量から得られた EOT は 3.0nm である。 同程度の物理膜厚を持つにもかかわらず Hf02 膜に比べてSi 窒化膜が小さいEOT を持つ事は、 Hf02膜がSi 窒化膜に比べてより大きな誘電率 を持つ事と矛盾しない。しかし、導出した Ge 基板上の Hf02膜の比誘電率の値は約7 であり、 Si 基板上の Hf02膜の比誘電率の値 12~14 に 比べて小さい。

図5に上記 Ge 基板上の Hf02 膜及び Si 窒 化膜 MIS キャパシタのゲートリーク電流を示 す。Ge の小さいバンドギャップと Ge 上へ堆 積した高誘電率膜の低品質性によりゲートリ ーク電流は両方の極性において Si 基板上の 場合よりも大きくなっている。しかしながら、 等価な EOT にスケールした場合の報告されて いる Ge 基板上へ堆積した高誘電率膜のゲー トリーク電流とを比べると図5に示した A1/Hf02/p-Ge MIS キャパシタのゲートリーク 電流は等しいレベルである。一方、Ge 上に堆 積した Si 窒化膜は良好でない電流リーク特 性を示した。従って、Ge 上に SiCl₄と NH₃に よる ALDを用いて堆積した Si 窒化膜は更なる 最適化が必要と考えられる。

以上まとめると、Hf[N(C₂H₅)₂]₄と H₂O の 交互照射を用いた Ge 基板上への HfO₂の ALD 法の確立を行い、RBS による組成分析、原子 間力顕微鏡による膜平坦性の評価を行い、良 好な膜が得られている事を確認した。また、 電気特性についても MIS キャパシタを C-V 特 性から EOTの決定を行うとともにリーク電流 評価を行い、良好な膜が得られている事を確 認した。更に Ge 基板上への Si 窒化膜の ALD についても調べ、MIS キャパシタの C-V 特性 から EOTの決定しリーク電流評価を行ったが、 良好な膜を得る事はできなかった。

一方、ソース/ドレイン上に Ge 金属化合物を形成し金属電極とのコンタクト抵抗を

低減する技術に関して、NiとGeの固相反応 の真空アニールにおいて、250℃でNiGeの 多結晶化が始まり、350℃でほとんどが結晶 化しシート抵抗も低下し、400℃以上では表 面の平坦性が悪化する事を再確認した。

図1Ge 基板の原子間力顕微鏡像による表面粗 さの観察。HFディップ前(a)と後(b)。

図2 Ge 基板上に 300℃で 20 サイクル ALD 法により堆積した HfO₂ 膜についての 高分解能 RBS による Hf、Ge、O の深さ方 向プロファイル。

図 3 Ge 基板上の ALD 法で堆積した HfO₂ 膜 と Si 窒化膜の膜厚のサイクル数依存性。

図4 容量-電圧特性。(a) A1/HfO₂/p-Ge MIS キャパシタ、(b) A1/Si 窒化膜/p-Ge MIS キ ャパシタ。

図 5 Al/HfO₂/p-Ge MIS キャパシタと Al/Si 窒化膜/p-Ge MIS キャパシタのゲート リーク電流特性。

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に

は下線)

〔雑誌論文〕(計 1 件)

1. Shiyang Zhu and <u>Anri Nakajima</u>, "Atomic Layer Deposition of HfO₂ and Si Nitride on Ge Substrates," Jpn. J. Appl. Phys. Vol. 46, No. 12, pp. 7699–7701, Dec. (2007).

```
〔学会発表〕(計 0件)
```

〔図書〕(計 0件)

〔産業財産権〕 〇出願状況(計 0件)

○取得状況(計0件)

[その他]

6.研究組織
(1)研究代表者

中島 安理 (NAKAJIMA ANRI)
広島大学・ナノデバイス・バイオ融合科
学研究所・准教授
研究者番号:70304459

(2)研究分担者

横山 新 (YOKOYAMA SHIN)
広島大学・ナノデバイス・バイオ融合科
学研究所・准教授
研究者番号:80144880

(3)連携研究者