科学研究費補助金研究成果報告書

平成23年3月31日現在

研究種目:基盤研究(B)
研究期間: 2007~2009
課題番号: 19360342
研究課題名(和文)溶融塩ーシリコン交換反応によるβ-鉄シリサイド半導体創製の物理化学
研究課題名(英文) Physical chemistry on the preparation of β-FeSi₂ semiconductor by the exchange reaction between molten salts and silicon
研究代表者
森田 一樹 (MORITA KAZUKI)
東京大学・生産技術研究所・教授
研究者番号: 00210170

研究成果の概要(和文):

Fe-Si 二元系液相からの直接生成が困難であった β -FeSi₂を、溶融塩-Si 交換反応により Si ウェ ハ表面に析出させる方法を考案した。さらに、この析出方法を拡張させ、 β -FeSi₂薄膜への Co、 Ni などのドーパントの導入方法を提案し、作製した薄膜に対して電気特性および光学特性を評 価した。

研究成果の概要(英文):

Until now, it is difficult to obtain the β -FeSi₂ bulk crystal directly from the Fe-Si binary liquid, however, in this study, the new method to prepare β -FeSi₂ film on Si Substrate by cation exchange reaction between molten salts and Si have been established. In addition to that, the doping method (such as Co, Ni, etc.) to β -FeSi₂ by this exchange reaction was suggested, and the electrical and optical properties of this β -FeSi₂ film was investigated.

交付決定額

			(金額単位:円)
	直接経費	間接経費	合 計
2007年度	7, 400, 000	2, 220, 000	9, 620, 000
2008年度	4, 100, 000	1, 230, 000	5, 330, 000
2009年度	4, 100, 000	1, 230, 000	5, 330, 000
年度			
年度			
総計	15, 600, 000	4, 680, 000	20, 280, 000

研究分野:工学

科研費の分科・細目:材料工学・金属生産工学

キーワード:環境材料、金属生産工学、結晶成長、太陽光発電、表面・界面物性

1. 研究開始当初の背景

β-FeSi₂は、0.80~0.87 eV のバンドギャッ プと高い光吸収係数(約 10⁵ cm⁻¹)を持ち、 また環境面では資源的に豊富であり、毒性が 低いことから、高効率太陽電池や発光デバイ スの材料として期待されている。しかし、 Fe-Si 二元系状態図上では、 β -FeSi₂相と液相 の間に α -FeSi₃相が存在するため、直接液相 からバルクのβ-FeSi₂相を析出させるのは困 難である。そこで、現在は Si 基板上での薄 膜β-FeSi₂成長の研究が行われている。薄膜 作製方法には、イオン注入法、多層膜法など 様々な方法あるが、このような蒸着法ではい ずれも成長速度が遅く、なおかつ高真空雰囲 気下で行う必要があるため、太陽電池生産の ような大規模生産プロセスには不向きであ る。一方、金属溶媒を用いた研究も行われて おり、申請者らは Fe-Si-Al 溶媒からの析出 を試みたものの、β-FeSi₂が安定な温度では Fe の溶解度が著しく小さいため生成速度が 小さく物性評価が可能な同物質を得ること は困難であった。

3. 研究の方法

(1) 試料作製方法

NaCl : KCl = 1 : 1 (mol 比)の混合塩 3.5 g に FeCl₂ と CoCl₂ のモル濃度の合計が 0.1 mo1% (0~0.02 mo1%CoCl₂) になるように FeCl₂・4H₂0 および CoCl₂・6H₂0 試薬を添加し た。He 雰囲気下、0.5 h、1173 K で予備溶融 した塩化物を、Si(100)ウェハとともにグラ ファイト坩堝に入れ、石英反応管内に設置し た。反応管内を真空排気した後に、脱酸、脱 水、脱 CO2 処理した He ガスを 50 ml/min で 導入した。その後、1173 ± 1 K に制御され た SiC 電気抵抗炉内に、石英反応管を入れ 3 h 保持した後、取り出し放冷した。実験後、 部の試料については、ウェハのみ(塩化物は なし)をグラファイト坩堝に戻し、石英反応 管内に設置した。前述と同様の方法で He ガ スを導入し、1123 Kの電気炉内で所定時間 (6 ~ 24 h)熱処理を施した。

Fig.1 Experimental apparatus.

(2) 作製試料の評価方法

試料の評価に関しては熱処理前および熱処 理後のウェハ表面上の反応層のX線回折測定 を行った。さらに熱処理後のウェハ断面を、 電子線マイクロアナライザ(EPMA: Electron Probe Micro-Analysis)により観察し、Coの 定量分析を行った。物性測定に関しては、4 端子法による電気抵抗率の温度依存性の評 価、また紫外・可視・近赤外分光光度計によ る透過率測定(測定波長:1000 ~ 2000 nm) を行った。

4. 研究成果

Si 交換反応によるβ-FeSi₂薄膜の創製
 式に示す Si ウェハと溶融塩中の FeCl₂
 との溶融塩-Si 交換反応を用いることにより、
 Si 基板上でのβ-FeSi₂薄膜の創製に成功した。

5Si (s) + 2FeCl₂ (1) = 2 β -FeSi₂ (s) + SiCl₄ (g) (1)

また、SEM により膜厚も評価し、他の作製方 法よりも成長速度が速く、容易なプロセスで 大量生産が可能となることを明らかにした。 引き続き、太陽電池材料として使用する場合 を念頭にドーパントの添加を行った。 (2)生成相の CoCl。濃度依存性

Table1に、溶融塩中の CoCl₂濃度を変化さ せた際の、Si ウェハ表面上の X 線回折測定結 果を示す。また熱処理 6 h および 24 h 後の 試料表面での生成相も同時に示す。熱処理条 件によっては、FeSi 相が検出された場合もあ った。その中で微量であると判断したものに ついては、括弧内で表記してある。溶融塩中 CoCl₂ 濃度の増加に伴って、β-FeSi₂ 以外に α -FeSi₂の生成も認められた。本来、 α -FeSi₂ は 1210 K 以上で安定に存在することが知ら れているが、Co が β -FeSi₂にドープされたこ とにより、α-FeSi₂が安定に存在する上限温 度が低下したため、1173K でもα-FeSi,が観察 されたと考えられる。このことは、Weiserら [2]が、Coのドープ量の増加にしたがい、 β -FeSi₂相から α -FeSi₂相への変態温度が低下 することと一致する。

Table 1 Phase detected by XRD analysis.

mol%	mol%	Initial	6 h	24 h
$FeCl_2$	$CoCl_2$		annealing	annealing
0.1	0	β -FeSi ₂	β -FeSi ₂	β -FeSi ₂
0.095	0.005	β -FeSi ₂	β - FeSi ₂	$ ho$ -FeSi $_2$
0.090	0.010	β -FeSi ₂	ho - FeSi ₂	$ ho$ -FeSi $_2$
0.085	0.015	β -FeSi ₂	$ ho$ - FeSi $_2$	$ ho$ -FeSi $_2$
		$lpha$ -FeSi $_2$	$lpha$ -FeSi $_2$	
		FeSi		
0.080	0.020	β -FeSi ₂	β - FeSi ₂	β -FeSi ₂
		lpha -FeSi ₂	$lpha$ -FeSi $_2$	$lpha$ -FeSi $_2$
		FeSi		

そこで次に、上記で作製した試料に対して、 1123 Kで6hまたは24hの熱処理を行うこ とにより、β-FeSi₂単相の生成を試みた。熱 処理 24 h では、CoCl₂濃度が 0.015 mol%以下の試料にてβ-FeSi₂の単相が得られた。

(3) FeSi, 層中の Co の CoCl, 濃度依存性

Table 1 で熱処理 6 h を施した試料断面の EPMA 分析を行い、FeSi₂層中の Co の定量を行 た。その結果を Fig.2 に示す。溶融塩中の CoC12 濃度の増加にともない、FeSi2 層中の Co のドープ量が増加していることが分かる。 このことは、上記したように溶融塩中の CoCl₂ 濃度が増加するに伴い、 α -FeSi₂の安定温度 領域が減少し、1173 K において α -FeSi₂が確 認されたことと一致する。

Fig.2 Relationship between Co concentration in molten salts and its substitutional fraction in FeSi₂.

(4) 電気伝導率の温度依存性

熱処理6hを施した試料に対して電気抵抗 率の温度依存性を測定し、結果をFig.3に示 す。文献値としてBirkholzら[3]が測定した ノンドープバルクβ-FeSi₂における電気抵抗 率の温度依存性を載せる。CoCl₂濃度が0%で 作製したβ-FeSi₂の電気抵抗率は、低温では 文献値と非常に良く一致している。また、 CoCl2濃度が0%の試料に比べ CoCl2を添加 した試料では電気抵抗率が大きく減少して いるのが分かる。これは、Coがβ-FeSi₂にド ープすることによりβ-FeSi₂層中のキャリア 密度が増加したためと推察される。

Fig.3 Electrical resistivity as a function of reciprocal of the absolute temperature.

(5)透過率測定

熱処理 24 h を施した試料の透過率測定結 果をFig.4に示す。CoCl。濃度の増加にしたが い、透過率が減少しているのが分かる。これ は、上記で示したように FeSi2 層中のキャリ ア密度が増加し、電磁波が FeSi₂層中の自由 キャリアに働き吸収されたためと考えられ る。ここで、CoCl2 濃度 0、0.005 mol%の試 料の透過率から、Tanら[4]の方法を用いて光 学バンドギャップを求めると、その値は0.75 eV、0.71 eV であった。この値は、彼らの報 告値 (0.84 ~ 0.90 eV) とはオーダー的に 一致した。しかし、β-FeSi₂のバンドギャッ プは格子歪みに対して敏感に変化すること が知られているので、溶融塩からの不純物の 混入やβ-FeSi。の結晶性などの影響を検討す る余地がある。

以上のように、本法により得られた・ β -FeSi₂ 薄膜の特性が示され、Coドープにおいても、 α -FeSi₂相の析出を抑制し β -FeSi₂を 析出させるための作製条件の指針が明らかになった。

Fig.4 Transmittance as a function of photon energy.

5. 主な発表論文等 (研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計2件)

- Motohiro Sakamoto, <u>Kazuki Morita</u>, Preparation of Co-added β-FeSi₂ by Cation-exchange Reaction between Molten Salts and Si, Materials Transactions, 査 読有、vol. 51, No. 1, pp90-93, (2010)
- Tsuyoshi Yoneyama, Takeshi Yoshikawa, <u>Kazuki Morita</u>, Growth of *b*-FeSi₂ Layers on Si(100) Substrates by Exchange Reaction between Si and Molten Salts, Japanese Journal of Applied Physics, 査読有, 46(2007), 5233-5237

〔学会発表〕(計 2 件)

- 1. <u>Motohiro Sakamoto, Kazuki Morita,</u> Characterization of β -FeSi₂ Film Synthesized by Exchange Reaction between Si and Molten Salts, TMS 2009 Annual Meeting & Exhibition, San Francisco, USA, (February 15, 2009)
- 坂元基紘、米山毅、<u>森田一樹、</u>「溶融塩-Si 交換反応によるβ-FeSi₂膜の作製と評価」 『日本金属学会』、熊本、143 回、2008 年9月24日

〔図書〕(計0件)

 〔産業財産権〕
 ○出願状況(計1件)
 名称:β-FeSi₂形成方法および電子デバイス 作成方法
 発明者:森田一樹、吉川健、米山毅
 権利者:国立大学法人東京大学
 種類:特許
 番号:特開 2007-281411
 公開年月日:2007.10.25
 国内外の別:国内

○取得状況(計0件)

〔その他〕 ホームページ等

6. 研究組織

 (1)研究代表者 森田 一樹 (MORITA KAZUKI)
 東京大学・生産技術研究所・教授 研究者番号:00210170

(2)研究分担者 なし

(3)連携研究者 なし