様式 C-19

科学研究費補助金研究成果報告書

平成 22 年 3 月 31 日現在

研究種目:基盤研究(B) 研究期間:2007~2008 課題番号:19390315

研究課題名(和文)中性子捕獲ガン治療(BNCT)用複合加速構造 IH 単空洞線形加速器の研究 研究課題名(英文) Study of Hybrid Single Cavity IH Linear Accelerator for BNCT

研究代表者

服部 俊幸(HATTORI TOSHIYUKI)国立大学法人東京工業大学・原子炉工学研究所・教授研究者番号:50134648

研究成果の概要:都市部の病院に設置可能な、中性子捕獲がん治療(BNCT)用複合加速構造 IH 単空 洞線形加速器の基礎的研究を行った。研究対象の複合加速構造 IH 単空洞線形加速器は、高周波四重 極(RFQ)型とドリフトチューブ(DT)型の2種類の加速電極構造を1つの空洞内部に挿入するこ とで小型化・省電力化を実現する。しかし、そのまま単純に組み合わせただけでは各種の高周波電磁 気的な問題が発生するため、3次元電磁場シミュレーションにより基本特性を評価し、さらにプロト タイプモデルを開発してシミュレーション結果との比較検証をおこなった。また、ルーマニア・サピ エンタ大学とBNCT 用大強度陽子イオン源の共同開発を行った。これらの成果より、長さが 3m 程度 で高周波消費電力が 100kW 以下の、複合加速構造 IH 単空洞線形加速器を用いた BNCT システムの 実現可能性が確認された。

交付額

(金額単位:円)

	直接経費	間接経費	合計
2007 年度	9,300,000	2,790,000	12,090,000
2008 年度	5,200,000	1,560,000	6,760,000
総計	14,500,000	4,350,000	18,850,000

研究分野:内科系臨床医学

科研費の分科・細目: 放射線科学

キーワード:中性子捕獲療法(BNCT)、複合加速構造 IH 単空洞線形加速器、大強度陽子イオン源

1. 研究開始当初の背景

放射線のがん治療への応用は長い歴史を持つ が、特に近年目覚ましい治療実績をあげているの が、加速器を用いた高エネルギー重イオンビーム を用いる方法である。重イオンは他の放射線と比 べて局所的なエネルギー付与が大きく、狙った部 位への効果的な照射が可能である。我が国では、 世界に先駆けて放射線医学総合研究所などを中 心に研究が進められている。しかし、がん細胞が 浸潤性をもつ場合は腫瘍に取りこまれている正 常細胞も破壊されることになる。

一方、ホウ素中性子捕獲療法(BNCT)はがん 細胞に吸収されやすいホウ素(¹⁰B)化合物薬剤 を人体に投与後、中性子を照射して、¹⁰Bの中性 子反応により発生した a線(He)とLiイオンが ガン細胞を破壊する治療法である。図1にBNCT の模式図をしめす。粒子線治療としては前述の重 イオンビームを使う場合と同じであるが、BNCT では発生したイオンの生体内での飛程が 5~ 10µm である。これは細胞の大きさのオーダーで あり、がん細胞のみを選択的に破壊することがで きる理想的治療法である。

これまで日本では過去に日立炉や武蔵工大炉 を利用して BNCT の臨床治療が行われ、現在は 京大炉、原子力機構の JRR-4 が利用されている。

しかし、小型原子炉といっても非常に大きく、 病院に設備を置くことは不可能である。

2. 研究の目的

加速器を利用して数 MeV 以上かつ 10mA 以上 の陽子を発生すれば、Li ターゲットで BNCT 治 療可能な中性子を生成することができる。また、 加速器が小型で必要電力が少なければ、病院内に 設置して運転・治療することが可能である。この エネルギー領域で必要強度の陽子ビームを発生 出来るのは、基本的に線形加速器だけである。そ こで、これまで我々のグループが開発してきた、 格段に加速電力効率が良く小型化可能な IH 型空 洞に、RFQ 型と DT 型の加速電極構造を挿入し た複合単空洞線形加速器を開発し、その原理実証 と病院内設置 BNCT システムへの実用可能性の 評価を行う。

3. 研究の方法

(1)複合加速構造 IH 単空洞加速器の基礎的研究 BNCT 用線形加速器として、Li または Be タ ーゲットを仮定し、加速エネルギー3MeV、陽子 ビーム電流 10mA の仕様で設計を行う。複合加 速構造 IH 単空洞線形加速器の加速空洞を、3 次 元電磁場シミュレーションプログラムにより検 討し、プロトタイプモデルを製作して高周波電磁 場計測を行う。そして、複合加速構造単空洞加速 器の基本的特性を解明し、実機に対する評価を行 う。

(2)高強度陽子イオン源の開発研究

BNCT 用陽子線形加速器には、10~20mA の 陽子ビームを発生可能な大強度陽子イオン源が 必要である。そこで、これまで長年にわたってイ オン源の共同研究を行ってきた、ルーマニア・サ ピエンタ大学の海外研究協力者と協力して共同 開発を行う。 4. 研究成果

(1)複合加速構造 IH 単空洞加速器の基礎的研究 複合加速構造 IH 単空洞加速器の粒子軌道計算

を、RFQ 加速構造部は PARMTEQ プログラム により、DT 加速構造部は自作プログラム PMLOC および TRACE-3D により行った。2 種 類の加速構造の接続部にはビームマッチング用 に 3 台の四重極磁場レンズを導入することを考 えた。そして、RFQ 電極と DT 電極の形状配置 の最適化を行い、その結果をもとにして複合加速 構造 IH 単空洞線形加速器の基本的形状を 3 次元 電磁場 シミュレーションソフトウェア (COMSOL、MW-STUDIO など)により検討 し、コールドモデル測定値と比較した(図 2)。

(2)加速空洞詳細設計

前項の基礎的研究の結果、複合加速構造 IH 単 空洞線形加速器内部の RFQ 構造と DT 構造間に 不整電場が発生することが分かった。その解決方 法として、大型チューブ電極を組み込むことを考 え、3 次元電磁場シミュレーションにより回避可 能であることを確認した。また、この大型チュー ブ電極内部にビームマッチング用の 3 連四重極 電磁石を配置し有効利用することにした。そして プロトタイプモデルを開発し、RFQ 加速構造と DT 構造の接続部の軸方向電場が実際に小さく なることを実測した(図 3)。

また、そのときの3次元電磁場シミュレーション結果を用いて粒子軌道計算を再び行い、 10mAの陽子ビームを3MeVまで加速できる BNCT用複合加速構造IH単空洞線形加速器が実現可能なことを確認した。その形状図を図4に示す。

図2 複合加速構造 IH 単空洞線形加速器の ビーム軸電場分布シミュレーションと実測結果

図3 複合加速構造 IH 単空洞線形加速器の ビーム軸上電場分布改良結果

図 4 BNCT 用複合加速構造 IH 単空洞 線形加速器の形状図

(3)高強度陽子イオン源の開発研究

ルーマニア・サピエンタ大学の高性能イオン源 をBNCT用大強度陽子イオン源に改造し(図5)、 日本製の測定装置と組み合わせてビーム特性評 価システムを組み立てた。そして、10mAの大強 度陽子ビーム生成に向けて調整を続けている(図 6)。

図5 ルーマニア・サピエンタ大学と 共同開発した大強度陽子イオン源

図6 ビーム調整中の大強度陽子イオン源

5. 主な発表論文等

〔雑誌論文(計5件)〕

- ① Takuya Ishibashi, <u>Noriyosu Hayashizaki</u>, <u>Toshiyuki Hattori</u>, Design of two-beam-type IH-RFQ linac, Nuclear Instruments and Methods in Physics Research A, 606, (2009), 116-119. 査読あり
- ②<u>T. Hattori, N. Hayashizaki</u>, T. Ishibashi, T. Ito, M. Okamura, J. Tamura, C⁶⁺ Ion Hybrid Single Cavity Linac with Direct Plasma Injection Scheme for Cancer Therapy, Proceedings of the XXIV Linear Accelerator Conference, (2009) 211-213, 査読なし
- ③ Takuya Ishibashi, <u>Noriyosu Hayashizaki</u>, <u>Toshiyuki Hattori</u>, Taku Ito, Jun Tamura, Design study of a multibeam type IH-RFQ linac to accelerate high intensity and low energy heavy ion beams, Nuclear Instruments and Methods in Physics Research B, 266, (2008) 2146-2149 査読あり
- ④ Takuya Ishibashi, <u>Noriyosu Hayashizaki</u>, <u>Toshiyuki Hattori</u>, Taku Ito, Liang Lu, Jun Tamura, Multibeam cavity for low energy beam acceleration, Nuclear Instruments and Methods in Physics Research B, 261, (2007) 13-16, 査読あり
- ⑤ Taku Ito, <u>Noriyosu Hayashizaki</u>, Naoko Matsunaga, Takuya Ishibashi, Jun Tamura, Liang Lu and <u>Toshiyuki Hattori</u>, Research of hybrid single cavity linac, Nuclear Instruments and Methods in Physics Research Section B, 261, (2007) 17-20, 査読 あり

〔学会発表(計10件)〕

- ①盧亮, <u>服部俊幸</u>, <u>林崎規託</u>, 伊藤卓, 石橋拓弥, プラズマ直接入射法を使ったがん治療用C6価 イオン加速複合構造単空洞線形加速器, 日本 原子力学会 2009 年春の年会, 2009 年 3 月 24 日, 東京
- ②伊藤卓, <u>林崎規託</u>, <u>服部俊幸</u>, 石橋拓弥, 田村 潤, 複合加速構造単空洞リニアックモデルの

設計,日本原子力学会 2008 年秋の大会,2008 年 9月 5日,高知

- ③石橋拓弥,<u>林崎規託,服部俊幸</u>,伊藤卓,盧亮, 2ビーム型IH-RFQ加速空洞のRF特性,日本 原子力学会2008年秋の大会,2008年9月5日, 高知
- (4) <u>T. Hattori, N. Hayashizaki</u>, T. Ishibashi, T. Ito, M. Okamura, J. Tamura, C⁶⁺ Ion Hybrid Single Cavity Linac with Direct Plasma Injection Scheme for Cancer Therapy, Proceedings of the XXIV Linear Accelerator Conference, September 29- October 3, 2008, Victoria
- ⑤伊藤卓,<u>服部俊幸,林崎規託</u>,石橋拓弥,盧亮, 粒子軌道計算による複合加速構造単空洞リニ アックの設計,第5回日本加速器学会年会・第 33回リニアック技術研究会,2008年8月6日, 東広島
- ⑥盧亮,<u>服部俊幸,</u><u>林崎規託</u>,伊藤卓,石橋拓弥, APF-IH 型線形加速器空胴のデザインとシミ ュレーション,第5回日本加速器学会年会・第 33回リニアック技術研究会,2008年8月8日, 東広島
- ⑦伊藤卓,<u>林崎規託</u>,服部俊幸,石橋拓弥,田村 潤,複合加速構造単空洞リニアックの設計,日 本原子力学会 2008 年春の年会,2008 年 3 月 27 日,大阪
- ⑧伊藤卓,<u>林崎規託,服部俊幸</u>,石橋拓弥,田村 潤,複合加速構造単空洞リニアックの開発 (IV),日本原子力学会 2007 年秋の大会, 2007 年 9 月 28 日,福岡
- ③Taku Ito, <u>Noriyosu Hayashizaki</u>, <u>Toshiyuki</u> <u>Hattori</u>, Takuya Ishibashi, Jun Tamura Design of hybrid single cavity linac for BNCT, 9th european conference on accelerators in applied research and technology, September 3-7, 2007, Florence.
- ^{(III}) Taku Ito, <u>Noriyosu Hayashizaki</u>, <u>Toshiyuki</u> <u>Hattori</u>, Takuya Ishibashi and Jun Tamura, Design of Hybrid single cavity linac, Ninth Symposium on Accelerator and Related Technology for Application, June 9, 2007, Tokyo.

6. 研究組織

(1)研究代表者
服部俊幸(HATTORI TOSHIYUKI)
東京工業大学・原子炉工学研究所・教授
研究者番号: 50134648

(2)研究分担者

林崎規託(HAYASHIZAKI NORIYOSU) 東京工業大学・原子炉工学研究所・助教 研究者番号:50334537 川崎克則(NAWASAKI KATUNORI) 東京工業大学・大学院理工学研究科・助教 研究者番号:50376943