様式 C-19

科学研究費補助金研究成果報告書

平成 21年 5月 14日現在

研究種目:	基盤研究	ቼ (C)
研究期間:	2007~2	008
課題番号:	1956008	9
研究課題名	(和文)	飛翔体衝突による粉粒体のクレーター形成メカニズム及び力学的
		支配因子の解明
研究課題名	(英文)	Analysis on Cratering Mechanism Subjected to Projectile Impact and
		Mechanical Factors Governing It
研究代表者	西田	政弘 (NISHIDA MASAHIRO)
	名古居	屋工業大学 工学研究科 准教授
	60282	828

研究成果の概要:飛翔体が粉粒体の表面に衝突した時のクレーター形成については未解明な点 が多い.本研究では、種々の形状・材質の飛翔体が粉粒体の表面に衝突した際のクレーターの サイズおよびその条件について、主に実験により詳しく調べた.特にあまり調べられていない 斜め衝突時の挙動について詳しく調べ、クレーターサイズや貫入条件についての実験式を提案 した.さらに、飛翔体の形状がクレーター形成に与える影響について調べた.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	1,900,000 円	570,000 円	2,470,000円
2008年度	900,000円	270,000円	1,170,000 円
年度			
年度			
年度			
総計	2,800,000円	840,000円	3,640,000円

研究分野: 工学

科研費の分科・細目: 機械工学・機械材料・材料力学 キーワード: 粒粒体, 衝突, 貫入, 跳ね返り, 安息角, 密度比

1. 研究開始当初の背景

これまで、容器中に規則もしくは不規則充 填させた粉粒体に飛翔体(速度25 m/s以下) が衝突する際の粉粒体の衝撃挙動および飛散 挙動を,詳しく調べてきた.これらの結果を 発表した学会での討論や学協会誌への原著論 文の投稿の際に、得られた結果のうち、特に クレーター(粉粒体表面の小さな窪みも含む) の形状やそれに影響を与える因子について多 くの研究が行われているため、「クレーター 形成のメカニズムについて、これまでに主だ った点は解明されている」と考えていたため、 これまでの自分の研究ではクレーターの形状 についてあまり考察してこなかった.しかし, 種々の議論を通して次第に未解明の点が分か ってきた.そして,特に工学的応用を想定し た研究は数が少ないことも分かってきた.

Sharmaは超低速衝突(1 m/s以下)時の粉粒 体のクレーター深さの理論を構築しようとし ているが、それ以上の速度(実用に耐えうる 衝突速度)では、様々な非線形性が生じるた め、クレーターの直径や深さに対する実験式 が主に使われている.クレーターの実験解析 やシミュレーションは、地球物理学、物理学、 粉体工学、機械工学、土木工学などで多くの 研究が行われている.粉粒体は流動性を有す るため、流体力学をバックグラウンドとする 研究者が主に行っていたり、流体近似したり する場合が多い.しかし、飛翔体は固体であ り、衝突時に弾性変形もしくは塑性変形し、 粉粒体を構成する個々の粒子も固体で、弾性 →塑性変形、時には破壊する場合もある.粒 子の研究者にはつて多くの研究があるが、ク レーター形成に粒子の弾性変形→塑性変形 している研究は少ない.また、個々 の粒子の変形には固体材料のひずみ速度依存 性や温度依存性を考慮する必要がある.さら に、個々の粒子にはその内部で波が伝わり、 粒子慮して考察を行っている例は少ない.

また、レンヌ大学(フランス)の Bideau らは、砂漠の風紋形成を目的として、飛翔体 衝突(3-70 m/s)を受ける粉粒体の研究を行 っている. 彼らは, Splash Functionと呼ぶ 砂 が飛び散るプロセスに注目し、スケール則と してFrude数 V₀²/gd (V₀:飛翔体の衝突速度, d: 粒子の直径, g: 重力加速度) を用いてい る. また, UCLAのUeharaら (Phys Rev Lett 90, 2003) やUC San DiegoのTsimringらは、飛翔 体衝突(1-5 m/s)による粉粒体表面のクレー ターの深さと直径の実験式を構築しようとし ている. Twente大 (オランダ) のLohseらは, Frude数に加え、Newton数 $\rho_t V_0^2 / \sigma_y$ (ρ_t : ターゲット材の密度, σ_v:ターゲット材の降 伏応力)を用いて,飛翔体の粉粒体への低速 衝突(1-10 m/s)から隕石の惑星への高速・ 大規模衝突(1-10 km/s)のクレーターを統一 的に説明しようとしているが、必ずしも上手 くいかず、論文中では新たな無次元パラメー タの必要性を指摘するに留まっている.

2. 研究の目的

機械工学, 土質工学および粉体工学など分 野において, 例えば, 杭打ち機による埋設施 工や飛翔体の侵徹の際(JAXA:はやぶさ計画, Lunar-A計画) にみられるような「粉粒体の衝 撃現象」が問題となり,多くの研究が行われ ている.粉粒体は多数の固体粒子の集合体で あるため,特有の圧縮性および流動性を有し, 特にその衝撃挙動は複雑で未解明の点が多い. 本申請研究では,飛翔体衝撃を受けた粉粒体 表面に形成されるクレーターの形成メカニズ ムおよびクレーター形成を支配する力学的因 子を明らかにすることを目的とする.

2年の研究期間では、これまでの研究結果 を参考に、クレーター形成を支配する因子を 調べ、クレーター形成を説明する無次元パラ メータを提案する.

3.	研究の方法
•••	191701777124

(1) 実験装置

図1に示すように、透明塩化ビニル (PVC)

の板で作製した直方体容器内に粒子集合体 をランダムに配列し、加速した飛翔体を種々 の角度(15~90 deg.)で衝突させた.この ときの様子を、正面と上方の2台の高速度ビ デオカメラ(IDT ジャパン社製, MotionScope PCI2000S および MotionXtra N3)により撮影 し、衝突現象や形成されるクレーター形状に 対する衝突速度と衝突角度の影響を調べた. 実験には、表1に示す飛翔体に直径 6~20 mm の鋼球、真鍮球、アルミナセラミックス球を 用い、粒子集合体には、表2に示すポリスチ レンビーズ(セキトー社製 SIIS)、ガラスビ ーズ(不二製作所製 FGB # 10)、ケイ砂(オ クムラセラム製 乾燥 5 号)の計5種類を用 いた.

図1 実験装置

表1 実験に用いた飛翔体

	Diameter [mm]	Density [g/cm ³]
Steel	6.0	7.81
Steel	9.0	7.81
Steel	11.1	7.81
Steel	12.0	7.81
Steel	20.0	7.81
Alumina	11.1	3.94
Brass	11.1	8.45

表2 実験に用いた粒子集合体

	Diameter [mm]	Powder density [g/cm ³]	Repose angle [deg.]
Sand	0.4	1.35	34
Grass beads	1.7	1.52	24
Polystyrene beads	6.0	0.64	23
Polystyrene beads	6.0	1.39	23
Polystyrene beads	6.0	1.78	26

4. 研究成果

(1) 飛翔体の挙動

ランダム配列した粉粒体に対して飛翔体 が衝突したときに観察される挙動を図2に 示す3つに分けて定義した.まず,(1)粒子 集合体に貫入する場合(Penetration),(2)粒 子集合体の最上層を水平方向に移動する場 合(Horizontal movement),そして,(3)粒子 集合体から離脱して上方へ跳ね返える場合 (Rebound)の3通りである.

(2) 飛翔体の挙動特性の遷移

衝突実験より得られた衝突後の飛翔体の 挙動を図3に示す.ただし,衝突挙動はプロ ットの形で分類し,それぞれ▼が貫入,○が 水平移動,△が跳ね返りを示している.また, 図4には遷移領域で貫入が起こる確率を示 す.一例として,飛翔体に鋼球9mm,粉粒 体:ポリスチレンビーズ 0.12gの結果を示し ている.

全ての飛翔体と粒子集合体の組み合わせ に共通して 90deg.付近で実験を行った場合, その衝突挙動は常に貫入であり,衝突角度が 小さくなるにしたがって水平移動が起こり 始め,さらに小さくなると跳ね返りが起こる. その現象は衝突速度にほとんど依存せず,挙 動が共存する遷移領域があることがわかっ た.そこで,貫入する最小の角度と貫入しな い最大の角度の間を遷移領域とした.また, その挙動が遷移し始める「貫入臨界角度」は 飛翔体と粒子集合体の直径比や嵩密度比に よって異なった.そこで,その現象が下記の 式で表せると仮定し,係数の α , β , γ を決 定した.

貫入臨界角度:

$$\theta_{E} = \alpha \left(\frac{(1 - \varepsilon) \rho_{t}}{\rho_{p}} \right)^{\beta} \left(\frac{D_{t}}{D_{p}} \right)^{\gamma}$$

ここで、 ρ_p は飛翔体の密度、 $(1-\epsilon) \rho_t$ は 粉粒体のかさ密度、 D_p は飛翔体の直径、 D_t は 粉粒体の粒子の直径である.

同一直径の結果を図5に示す.貫入臨界角 度はエラーバーで示しているが,ほぼ直線的 に変化し,その傾きは、0.5であった.つま り $\alpha = 0.5$ であった.さらに直径比の影響を 調べるために,種々のデータを加えた結果を

図6に示す.その結果,必ずしも直線状には ならず,ポリスチレンビーズとガラスビーズ を用いた場合と砂を用いた場合で異なる様

に思えた. そこで, それぞれ式を作ると, ポリスチレンビーズとガラスビーズ:

$$\theta_{E} = 210 \left(\frac{(1-\varepsilon)\rho_{t}}{\rho_{p}} \right)^{\frac{1}{2}} \left(\frac{D_{t}}{D_{p}} \right)^{\frac{2}{3}}$$

砂:

$$\theta_E = 130 \left(\frac{(1-\varepsilon)\rho_t}{\rho_p} \right)^{\frac{1}{2}} \left(\frac{D_t}{D_p} \right)^{\frac{1}{3}}$$

のようになった.いろいろな違いはあるが, ポリスチレンビーズ,ガラスビーズ,砂の違いの一つは,安息角である.安息角が結果に 影響を与えているものと考えられ,今後はその影響を調べる必要がある.

(2) クレーターの形状

次に、クレーターの形状について調べた. 飛翔体の角度が変化することによるクレー ターの形状の変化について考えた.予想通り、 斜め衝突では、円形から楕円形に変化する. しかし、長軸と短軸の長さの変化を測定し、 実験式を構築することを試みたがうまくい かなかったので、図7に示すように、衝突点 を基準に L_1 , L_2 とし、それらの長さの変化 を調べた.

図8 クレーター縦横比の衝突角度依存性 (飛翔体:鋼球20.0mm,ガラスビーズ) また,クレーターの形状は,衝突速度に依

存する.しかし,形状の縦横比は,衝突速度 に依存せず,ほぼ一定であった.そこで図8 に示すようにクレーターの形状の縦横比に ついて調べてみると,角度が変化するに従い, 変化し,それには一定の傾向が見られた.特 に貫入時には,角度の低下とともに縦横比が 大きくなっていった.また,貫入しない場合 は,縦横比に大きなばらつきが見られた.そ こで,貫入時について実験式を提案した.図 9のように, L_1 , L_2 をプロットすると,直 線状になった.そこでそれぞれを直線で結ぶ と,

$$\frac{L}{W} = \frac{1}{2} \left(\left(\sin \theta \right)^{\frac{2}{3}} + \left(\sin \theta \right)^{-1} \right)$$

のような形で表すことができ、図10に示す ように実験結果を再現することができる.

(3) 飛翔体の形状の影響

さらに、飛翔体を球形以外とし、図11の ような飛翔体を用いて、形状、質量の影響を 調べた.その結果、同じ質量であっても、円 柱の場合、貫入臨界角度が大きくなり、縦横 比は小さく.つまり、円形に近くなった.形 状の影響が大きいことがわかる.これに関し てはまだデータが少なく、今後データを増や していく必要がある.また、円柱形状の場合、 図12に示すような中央丘付きの半球状に なり,単純な半球状ではなくなった.

球 長円柱 中空円柱 短円柱図11 飛翔体の形状

図12 中央丘付きクレーター (長円柱の場合)

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 1 件)
 西田政弘,田中皓一,二次元規則配列された
 粒子群への飛しょう体の衝突(層数および異
 材層の影響)日本機械学会論文集A,A74-739 (2008-3) pp. 419-427.

〔学会発表〕(計 8 件)

- 場ハン,粒子集合体への貫入挙動に与える飛翔体形状の影響,平成20年度衝撃波シンポジウム(名大,3/19,2009)
- 2 奥村允,三次元粒子集合体への飛翔体の 衝突現象の観察,平成20年度衝撃波シン ポジウム(名大,3/17,2009).
- ③ 永松淳司,三次元粒子集合体への飛翔体 貫入現象の離散要素法シミュレーション, 平成 20 年度衝撃波シンポジウム(名大, 3/17, 2009).
- ④ 西田政弘,異種粒子層を含む二次元粒子 群への飛翔体衝突,第52回 日本学術会 議材料工学連合講演会(京大会館,10/23, 2008).
- (5) Masahiro Nishida, Oblique Impact of Projectiles on Granular Beds Consisting of Large-Diameter Spheres, Gordon Research Conference (Granular & Granular-Fluid Flow), 2008 Jun 24, Colby College.

⑥ 西田政弘,離散要素法シミュレーション

による粉粒体表面のクレーター形成の解 析,平成 19 年度 衝撃波シンポジウム, (3/18, 2008 東工大)

- ⑦ 西田政弘,離散要素法による粉粒体表面 のクレーター形成の解明,第51回日本学 術会議材料工学連合講演会(京大会館, 11/27,2007).
- ⑧ 奥村允,三次元粒子集合体への飛翔体の 衝突現象の観察(跳ね返り臨界角度およ びクレータの形状),高速度撮影とフォト 二クスに関する総合シンポジウム 2007 (名工大,2007,11/17).

[その他]

ホームページ

http://kenkyu-web.nitech.ac.jp/Profiles /0004/0000275/profile.html

6.研究組織
(1)研究代表者
西田 政弘 (NISHIDA MASAHIRO)
名古屋工業大学・大学院工学研究科・准教授
研究者番号:60282828

(2)研究分担者

(3) 連携研究者