科学研究費補助金研究成果報告書

平成21年 5月29日現在

研究種目:基盤研究(C) 研究期間:2007~2008年度 課題番号:19560120 研究課題名(和文) 切削加工によるステンレス鋼の表面改質におけるナノ構造解析 研究課題名(英文) Study on the nano-structure analysis for improvement of surface quality of stainless steel by cutting 研究代表者 坂本 重彦(SAKAMOTO SHIGEHIKO) 熊本大学・大学院自然科学研究科・准教授 研究者番号:00315285

研究成果の概要:

近年,オーステナイト系ステンレス鋼の機械加工において,金属表面がナノ結晶構造に変化 するとの研究報告がなされている.本研究では,まず超精密旋盤を使用して,オーステナイト 系ステンレス鋼 SUS304 に超精密正面旋削を行い,切込み深さなどの加工条件が仕上げ面に与 える影響を検討した.さらに,仕上げ面におけるオーステナイト系ステンレス鋼の変態を分析 した.次に,同じく SUS304 に対してエンドミルによる切削加工を行い,普通切削における加 工変質層を分析した.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	2,600,000	780,000	3,380,000
2008年度	1,000,000	300,000	1,300,000
年度			
年度			
年度			
総計	3,600,000	1,080,000	4,680,000

研究分野: 工 学

科研費の分科・細目: 機械工学・生産工学・加工学 キーワード: ナノ構造,表面改質,加工能率向上

1.研究開始当初の背景

ステンレス鋼は,耐腐食性や耐強度性といった特性を持つため,各種の製造業において利用範囲の広い鉄系金属である.一般的な普通切削では,オーステナイト系ステンレス鋼において,SUS 316と比較してSUS 304 は切削性が良いとされている.しかしながら,数µm 程度の切込みとなる超精密切削では,SUS 304 でナノメートルオーダの仕上げ面(鏡面)を得ることが非常に困難であった.

このとき,研究代表者はオーステナイト系ス テンレス鋼の超精密切削仕上げ面における マルテンサイト変態の存在を確認した.オー ステナイト系ステンレス鋼の圧延など塑性 加工において,マルテンサイト誘起変態は一 般的に良く知られている.しかしながら,切 削加工による仕上げ面表層でのマルテンサ イト変態は軽微であるためか,加工変質層と の扱いに過ぎず,ほとんど議論されていない.

2.研究の目的

研究代表者は,高強度かつ耐腐食性に強い 物理的および化学的特性に優れるステンレ ス鋼に対する切削加工の仕上げ面における 最表層のナノ構造解析を行なう.本研究課題 において,(1)切削加工によるマルテンサイ ト誘起変態が起こる加工条件を先ず実験的 に確認する.さらに,(2) マルテンサイト組 織化した切削仕上げ面の硬度変化と強磁性 体化におけるマルテンサイトへの変態量と の関係を定量的に分析する.最後に,(3)マ ルテンサイト誘起変態量を制御した表面改 質を伴う加工法の確立を目指す.つまり,マ ルテンサイト変態量を抑えた加工での能率 を向上させることを目的とする.そして仕上 げ加工工程にて,表面改質としての強磁性を 持つステンレス鋼の機能性材料化を目指す 加工技術を構築する.

- 3.研究の方法
- (1) SUS304 の超精密切削加工

SUS304 の被削性は,普通切削において SUS316より良く,良好な仕上げ面を得やす い.しかしながら,切り込み量が非常に微小 となる超精密切削において,SUS316の超精 密切削仕上げ面は,SUS304のときと比べて 良好になる.普通切削との異なる振る舞いを 示すSUS304では,切り込み量が微小である 超精密切削が,仕上げ面上でマルテンサイト 変態を起こしている.そこで,超精密正面旋 削を行って,切込み深さが仕上げ面に及ぼす 影響を実験的に検討する.

超精密正面旋削実験は,図1に示す超精密 旋盤(ULC-100A:東芝機械)を使用して, オーステナイト系ステンレス鋼 SUS304 に 対して行った.主な実験条件を表1にまとめ る実験で使用した工具は(TiAl)N系のPVD コーティングが被覆された超硬コーティン グ工具である.加工中,切削点近傍に水溶性 切削油剤をミスト状に供給した.得られた仕 上げ面は,ノマルスキー式微分干渉顕微鏡お よび非接触式表面形状測定装置 WYKO にて 観察した.また,得られた仕上げ面の硬度を 測定するために,ダイナミック超微小硬度計 を用いた.

図1 超精密旋盤による実験装置外観

表1 超精密正面旋削の実験条件

Machine tools :	Ultra-precision Lathe ULC-100A	
	Coated cemented carbide tool	
Cutting tools :	Nose radius: 0.4 mm	
	Rake angle: 0 deg Relief angle: 7 deg	
Workpiece material :	Stainless steel SUS304	
Cutting fluid :	Water-immiscible cutting fluid	
	Cutting speed: $V = 95-125$ m/min	
Cutting conditions :	Depth of cut: $d = 2, 5 \ \mu m$	
	Feed rate: $f = 2 \ \mu m/rev$	

(2) SUS304 のエンドミル加工

SUS304 は,切削加工によって仕上げ面上 にマルテンサイト変態を起こすことが確認 された.マルテンサイト組織を含む加工変質 層は,強度および硬度を上昇させている.言 い換えれば,マルテンサイト組織を多く含む 加工変質層を創成することが,製品を高強度 化することになる.本実験では,SUS304 に エンドミルを使用して切削加工を行い,創成 される加工変質層の深さを比較する.また, 切削速度と送り速度を変化させ,加工条件が 加工変質層に与える影響を検討した.

立形マシニングセンタ(V56:牧野フライ ス製作所)および立形マシニングセンタ (SV-400:森精機製作所)を使用して SUS304の普通切削加工を行った加工法は, 図2に示すように,エンドミルを用いた突き 加工である 主な実験条件を表2にまとめる. また,加工変質層の観察を容易にするために, エンドミルの半分を使用して加工した.加工 変質層の厚さ測定は,図2に示す観察部[1], [2], [3]に対して行った.主な実験条件を表2 にまとめる.使用した工具は,市販されてい る径 *d* = 6 mm の超硬スクエアエンドミルで ある.ステンレス鋼 SUS304 の組織を判別し やすくするために,図2に示した観察面を研 磨し,腐食させた.腐食後の観察面をノマル スキー式微分干渉顕微鏡で観察し,加工変質 層の厚さを計測した.

図2 エンドミルによる切削加工実験の外観

表2 エンドミルによる切削の加工条件

Vertical type of machining center SV-400, V56	
Cemented-carbide square nose end mill;	
Diameter : $d = 6.0 \text{ mm}$	
Number of cutting edge : 2	
Stainless steel SUS304	
Water-immiscible cutting fluid	
Cutting speed:	
<i>Vc</i> = 9, 55, 100, 200, 300, 375 m/min	
Feed rate:	
f = 0.001, 0.003, 0.008, 0.010, 0.030 mm/rev	

4.研究成果

(1) SUS304 の超精密切削加工

切削速度 V = 100 m/min において得られ た SUS304 の仕上げ面を図 3 に示す.切込み 量 d = 2 µm における仕上げ面 270 x 270 µm の範囲における 3 次元仕上げ面粗さは, 図 4 (a)に示すように $R_{23D} = 96$ nm(P-V)と非 常に良好な結果を得た.また,工具送り方向 への 2 次元仕上げ面粗さは, Rz = 58nm(P-V)となった.一方,切込み量 d = 5 µm のとき,WYKO 3 次元像からわかるとおり, 非常に大きな切削斑が確認された.得られた 仕上げ面は, $R_{23D} = 209$ nm(P-V), Rz = 150nm(P-V)と非常に大きな粗さとなった.

得られた仕上げ面表層の硬さを比較する ために,比較的小さな荷重10gfでビッカー ズ式硬度計を用いて圧痕を付けた.刻まれた 圧痕は,図4(b)に示すように走査型電子顕微 鏡にて観察され,それぞれの硬度を測定した. SUS304における本来の硬度がHv = 190程 度であるのに対し, $d = 5 \mu m$ の仕上げ面では Hv = 408,と非常に大きな値を示した.一方, $d = 2 \mu m$ の仕上げ面ではHv = 380となった. 得られた2種類の仕上げ面では,良好な仕上 げ面となった切込み $d = 2 \mu m$ で得られた加 工条件の方が,仕上げ面の硬度が低くなった.

 (a) *d* = 2 μm
(b) *d* = 5 μm
[*f* = 2 μm/rev, *V* = 100 m/min, *L* = 275 m, Water-immiscible type cutting fluid]
図 3 SUS304 の表面写真

(a) WYKO 3D images

[Hv = 380]

[Hv = 408]

(b) Vickers marks

[f=2 μm/rev, V=100 m/min, L=275 m, Water-immiscible type cutting fluid] 図 4 SUS304 における超精密切削仕上げ面の 測定結果

SUS304の表面改質について詳しい解析を 行うため,仕上げ面に対して腐食し,仕上げ 面上の組織を比較した.腐食後の仕上げ面顕 微鏡写真を図5に示す.腐食された仕上げ面 上に,結晶粒が明確に確認できる.黒い結晶 粒が,切込み d = 5 μm の仕上げ面上に非常 に多く観察される .一方 ,切込みが小さい d= 2 um の仕上げ面では,本来のオーステナイ ト組織が青く観察されている.次に,それぞ れの仕上げ面に対して永久磁石を近づけた ところ,加工前のSUS304には検知されなか った透磁性を示した.切込み d = 5 μm の仕 上げ面は, d=2 μm の仕上げ面に対して強い |透磁性を有していた. つまり,黒い結晶粒が マルテンサイト組織であることは明確であ り,切込み d = 5 µm の仕上げ面上に, d = 2 μm の仕上げ面よりも多くのマルテンサイト 組織が存在している.

前述の切込み量を変化させた超精密切削 実験から,切込み量の深さが,仕上げ面にマ ルテンサイト変態を起こす要因であるとい える.マルテンサイト変態を伴う SUS304の 加工変質層では,過大な切込み量は加工によ るマルテンサイト変態量を増加させ,硬度を 増す働きを示す.切込み量が大きくなること が,被削材である SUS304 に与える応力を大 きくし,加工誘発マルテンサイト変態を促進 しているといえる.

 (a) d = 2 μm
(b) d = 5 μm
[f = 2 μm/rev, V = 100 m/min, L = 275 m, Water-immiscible type cutting fluid]
図 5 超精密切削された SUS304 の腐食面

(2) SUS304 のエンドミル加工

切削速度の変化による加工変質への影響 を確認するために,切削速度 Vc = 9 - 375 m/min を変化させて切削した.送り速度は, 全て f=0.030 mm/rev で統一している.加工 変質層の境界を定めた基準は,被削材の中央 部から加工面に向かって組織を比較して,オ - ステナイト組織ではない組織を明確に確 認したところとした.端面から判定した境界 線までの箇所を加工変質層として,加工変質 層厚さを計測した.各切削速度で得られた観 察部[1],[2],[3]における加工変質層は, 図 6~8 に示した顕微鏡写真で求められる。 すべての写真における右側に加工でエンド ミルが通過した面を配置している.写真の左 部が,未加工である SUS304 が本来持つオー ステナイト組織である.一方,すべての観察 部において,加工点近傍に角ばったオーステ ナイト組織とは異なる結晶粒が存在してい る.加工変質層が,SUS304には本来ない特 性である透磁性を有していたことから推測 して,超精密切削と同様にマルテンサイト誘 起変態が起こっているといえる.本加工は, 切削油剤を供給することで,冷却作用によっ て温度変化を極力抑えて行われた.このこと は,温度的な影響が出にくい,極低速である 切削速度 Vc = 9 m/min においても,加工変 質層が確認されていることから, 被削材の仕 上げ面に生じる応力がマルテンサイト変態 を創成しているといえる。

次に,加工変質層の厚さについて比較する. エンドミル先端で随時創成される観察部[2] においては,図7にまとめるように,切削速

(c) Vc = 100 m/min
(d) Vc = 375 m/min
[f = 0.030 mm/rev, Water-immiscible cutting fluid]
図 6 エンドミル加工した SUS304 の観察部[1]

(a) Vc = 9 m/min

(b) Vc = 55 m/min

(c) Vc = 100 m/min
(d) Vc = 375 m/min
[f = 0.030 mm/rev, Water-immiscible cutting fluid]
図 7 エンドミル加工した SUS304 の観察部[2]

度の変化による加工変質層深さの違いは見 られなかった.一方,エンドミルの側面刃が, 加工中,常に接触し続ける図6および8に示 した観察部[1]および[3]における切削速度 の違いを比較すると,切削速度の上昇に伴い 加工変質層深さが厚くなっていた.切削速度 が速い場合,工作物に加わる力も大きくなり, その応力が蓄積されてマルテンサイト変態 量が増加したと考えられる.切削速度が最も 速いVc = 375 m/min における加工変質層の 厚さは、最も遅いVc = 9 m/min と比べて 200 μ m も厚く生じていた.また,切れ刃の侵入 口である観察部[1],切れ刃の出口にあたる 観察部[3]において厚さの比較を行うと,二

- (5)主な発表論文等
- [雑誌論文](計 1件) <u>S. Sakamoto</u>, Y. Kajiwara, T. Matsutori, Work affected layer of the finished surface in precision cutting of austenitic stainless steel, Proceedings of the euspen International Conference 2008, 253-257, 2008, 査読有
- [学会発表](計 2件)

待鳥寿文,SUS304の加工変質層に関する 基礎的研究,精密工学会九州支部・第8 回学生研究発表会,2007.12.09,長崎 <u>坂本重彦</u>,東二町圭介,CFRPのヘリカル 加工における穴あけに関する研究 - 各 種エンドミルによる加工精度への影響 - , 日本機械学会第7回生産加工・工作機械 部門講演会講演論文集,2008.11.21,岐 阜

〔産業財産権〕
出願状況(計 1件)
名称:穴あけ加工方法
発明者:坂本重彦,住友電気工業㈱,
住友電工ハードメタル㈱
権利者:同上
種類:特願
番号:2009-022535
出願年月日:2009年2月3日
国内外の別:国内

```
6.研究組織
```

(1)研究代表者
坂本 重彦(SAKAMOTO SHIGEHIKO)
熊本大学・大学院自然科学研究科・准教授
研究者番号:00315285

(2)研究分担者 該当なし

(3)連携研究者 該当なし