様式 C-19

科学研究費補助金研究成果報告書

平成21年 5月11日現在

研究 種目:	基盤研究(C)
研究期間:	2007 年度~2008 年度
課題番号:	19560176
研究課題名	(和文) レーザーマイクロプローブによる高速噴霧微粒化過程の解明
研究課題名	(英文) Study of atomization of high speed sprays by laser micro probe
研究代表者	植木 弘信(UEKI HIRONOBU)
長崎大学	・工学部・教授
研究者番	号: 30160154

研究成果の概要: (200字)

レーザーマイクロプローブを用いて、ディーゼル燃料噴霧液滴の速度およびサイズを計測した.サイズが約0.5µmのオイルミストを空気流動のトレーサーとして供給し、液滴とオイルミストの速度差から液滴ウエーバー数を評価した.噴霧中心から噴孔径の約5倍の位置で液滴のサイズ減少および数密度増加が観察され、この位置で液滴ウエーバー数10程度の液滴が観察されたことから、バグ分裂が生じているものと判断された.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007年度	2, 100, 000	630, 000	2, 730, 000
2008年度	1, 400, 000	420, 000	1, 820, 000
年度			
年度			
年度			
総計	3, 500, 000	1, 050, 000	4, 550, 000

研究分野: 工学 科研費の分科・細目: 機械工学・流体工学 キーワード: 混相流

1. 研究開始当初の背景

(1) 高速噴霧による液体微粒化はガスター ビンや往復動内燃機関の燃料噴霧,噴霧塗装, 噴霧洗浄,噴霧冷却,医療用ネブライザ,CVD, パウダー製造等多くの分野で利用されてい る.各分野において,要求される噴霧特性の 実現のために微粒化過程の把握ならびにモ デリングに関する研究が国内・国外で活発に 行われている.例えば,平成18年8月26日 から9月1日に,第10回国際微粒化会議 (ICLASS 2006: 10th International Conference on Liquid Atomization and Spray Systems)が京都で開催され,235 件の発表が なされた.微粒化過程の把握には、支配因子 の1つである液滴の速度、ならびに微粒化の 結果である液滴サイズの計測が不可欠であ る.しかし、微粒化過程においては液滴間距 離が本質的に短く、言い換えれば、液滴数密 度が高いため速度とサイズの計測は容易で なく、いずれの分野においても計測例はほと んどない.

 (2) 研究代表者は、マイクロスケールの測定体積を有するレーザー2焦点流速計(L2F; Laser 2-Focus Velocimeter)を用いること

によって高数密度噴霧液滴の速度とサイズ の計測が可能であることを、国内・国外の会 議で公表している. すなわち, レーザー光の 集光性を利用し,光干渉性を必要としない L2F を発展させることによって、噴孔出口か らわずか 0.5mm における液滴の速度・サイズ の空間分布・時間変化、ならびに噴霧コア部 における液滴の追いつき・追い越し現象を明 確に示した.さらに、液滴の速度・サイズの 結合確率密度の空間変化から噴霧コア部の 液滴分裂形態を調査し成果発表を行った. 、 の発表に対する討論において、「液滴速度と 周囲空気速度との相対速度が液滴ウエーバ ー数を決定するという観点から,液体微粒化 過程の解明には相対速度の情報が必要であ る」とのコメントがなされたことが本研究の 契機となった.

2. 研究の目的

(1) ディーゼル燃料噴射ノズルの噴孔近傍 における液滴の速度およびサイズを計測し, 噴射軸に垂直な断面における速度・サイズの 空間分布およびその時間変化を明らかにす る.次に,計測される液滴質量の積分値が重 量法による測定値と同じオーダーであるこ とを示し,L2Fの測定体積に現れる液滴のほ ぼ全てを検出し速度およびサイズを評価し ていることを明らかにする.すなわち,液滴 サイズの減少が液滴の分裂を現わすものと して理解できることを明確にする.

(2) 空気流動に追随する粒径約 0.5µm のオ イルミストを混入した空気中に軽油を噴射 して噴霧コア部の液滴の速度・サイズおよび オイルミストの速度を計測し,液滴とオイル ミストの速度差を代表速度として液滴ウエ ーバー数を評価する.液滴サイズの減少と液 滴ウエーバー数の関係から高速噴霧内部の 液滴分裂過程を明らかにする.

3. 研究の方法

(1) 図1はL2Fの測定体積および液滴の速度・サイズの測定原理を示す. 焦点直径 Fは約 3µm, 焦点長さ L は約 20µm であり, 焦点間距離 S は 17µm である. 飛行時間 t₁および散乱時間 t₂ が周波数 160MHz のクロックで計数される. 液滴速度 u は 2 焦点間距離 S を飛行時間 t₁で割ることにより求められる. すなわち,

$$u = \frac{S}{t_1} \tag{1}$$

また,液滴サイズは,2焦点間距離Sと液滴 サイズ d_p +焦点サイズFの比が飛行時間 t_1 と散乱時間 t_2 の比に対応することから次式 より求める.

$$d_p = u \cdot t_2 - F \tag{2}$$

(2) 噴霧液滴の空間的な分散の状況把握は, 高数密度場における液滴の分裂を理解する 上で重要である. L2F により測定される液滴 の速度および測定点通過時刻を用いて,液滴 間の飛行方向の距離 L_d を算出する. すなわ ち,液滴が測定点を通過した後,次の液滴が 通過するまでの時間 Δt と液滴の速度 u の積 により,

$$L_d = u * \Delta t \tag{3}$$

1 個の液滴が体積 $L_d * L * (F+dp)$ の空間に存 在すると考えられるので、局所的な液滴数密 度 N_d は

$$N_d = \frac{1}{\left(L_d * L * \left(F + d_p\right)\right)} \tag{4}$$

である.

液滴が等方的に分散していると仮定する と、液滴間距離 Liは

$$L_{i} = \frac{1}{N_{d}} \frac{1}{3}$$
(5)

で推定できる.

単位面積当たりの質量流量 *m_f* は数密度を 用いて,

$$m_f = \rho \cdot V_p \cdot u \cdot N_d \tag{6}$$

で表わされる. ここで,ρは液滴密度,V_ρは 液滴体積,またN_dは液滴数密度である. (3) 液滴に働く慣性力と表面張力の比を

表わす液滴ウェーバー数は,

$$We_{d} = \rho_{g} \Delta U^{2} d_{p} / \sigma \tag{7}$$

ここで、 ρ_g は空気の密度、 ΔU は液滴と周囲 空気の相対速度、 d_p は液滴のサイズ、 σ は燃 料の表面張力を示す。

(4) 図2はL2Fによる噴霧計測システムを示す.L2Fの光学系では最大出力100mW, 波長830nmの半導体レーザを光源とし,収 束レンズとして焦点距離が8mmの非球面レンズを採用した.全長350mmの光学系により2つの焦点における液滴からの後方散乱

Fig.1 Measurement probe of L2F

光を別個のアバランシェフォトダイオード に導き, FPGA (Field Programmable Gate Array)を用いたデジタルカウンタにより計 数された飛行時間および散乱時間をパソコ ンに転送した.信号処理系のデータサンプリ ング周波数は15MHz ある.

コモンレールにより供給される軽油を噴 孔径0.113 mm の5噴孔インジェクタを用い て大気中に間欠噴射した.噴射間隔は330 ms である. L2Fのデータ取得に同期して,イン ジェクタソレノイドに噴射開始信号を印加 してからの経過時間を 6 MHz のクロックで 計数した.測定点は,噴霧軸に z 軸, L2Fの レーザ光軸に y 軸をとり,y z 軸に垂直に x軸を取った. x 座標は噴霧中心から半径外向 きの距離を表し,噴霧中心を原点にとって標 記する.測定位置は 噴孔出口からの距離が z= 15 mm で x = -1.2, -0.6, 0.0, 0.6, および 1.2 mm の 5 点とした.実験条件としてレール圧 を 40MPa に設定し,ソレノイドに 0.6 ms の 期間の噴射信号を印加した.

(5) 噴霧液滴周囲の空気の速度を計測する ために、空気流動に追従するトレーサー粒子 としてサイズが 0.25~0.6μm のオイルミス トを用いた.オイルミストは平均サイズが 5 ~15μm の噴霧液滴に比べて十分小さい.

噴霧液滴とオイルミストが 0.01ms 以内の 時間差で取得された場合のみ液滴速度とミ スト速度の差をとり、各液滴の空気に対する 相対速度として算出した.計測点を z=20mm で, x=-1.6,-0.8, 0,0.8 および 1.6 の 5 点とし, 各計測点でそれぞれ 20,000 点のデータを取 得した.

4. 研究成果

(1) z = 15 mm の各測定点において上流焦 点を通過する液滴の数 NO をそれぞれ 5,000 に設定し, 20~120 回の噴射によってデータ を取得した. 図 3 は x = -1.2, -0.6, 0.0, 0.6,および 1.2 mm の 5 つの測定点について,上

Fig. 2 Fuel spray measurement system

流焦点を通過した液滴数を 0.1ms の時間窓毎 に集積し時間変化として示す. 横軸はインジ ェクタのソレノイドに噴射開始信号を印加 してからの経過時間である. 噴霧先端が測定 位置に到達する時刻は 0.9ms であり, 他の測 定位置に比べて *x*=0mm のデータ数が多い. 1.5ms 以降ではデータ数が減少している.

(2) 図4は0.1msの時間窓に対する算術平 均速度の時間変化を示す.0.9から1.4msの 間の高速領域は噴霧頭部,速度の減少が見ら れる1.5か1.8msは噴霧尾部と呼ばれる.0.9 から1.4msの間に速度は増加し*x*=0.0mmで は200m/sを越えている.また,噴霧頭部で

Fig. 3 Time variation of number of sampled data; z=15mm, droplets passing through upstream focus

Fig. 4 Time history of mean velocity

Fig. 5 Time history of mean size

Fig. 6 Spatial distribution of mean velocity

Fig. 7 Spatial distribution of mean size

Fig. 8 Spatial distribution of number density

は x=-1.2 および x=1.2mm に比べて x=0.0mm の平均速度が高いことがわかる.

図5は0.1msの時間窓に対する算術平均サ イズの時間変化を示す. 平均サイズは0.9 か ら1.3msの範囲で5つの測定位置で次第に減 少している. 1.8ms以降に見られる大きな変 動は図3に示されたように噴霧尾部でデータ 数が少ないことによるものと考えられる.0.9 から1.3msの範囲では平均液滴サイズはお およそ10µm 程度である.

(3) 0.9 から 1.8ms の噴霧頭部および尾部に ついて,時間窓 0.1ms 毎の平均速度の空間分 布を図6に示す.噴射期間にわたって速度分 布が軸対称であり,噴霧軸から周辺部に向か って減少することがわかる.図7は算術平均 液滴サイズの空間分布である.液滴サイズは 噴霧軸で最大であり, x=-0.6mm および x=0.6mm で一旦,減少し噴霧外縁で増加して おり, 噴射期間にわたってほぼ軸対称である. (4) 図 8 は時間窓 0.1ms ごとに液滴数密度 の空間分布を示す. 噴霧軸から 0.6mm 離れ た位置で数密度が高くなっている.この位置 で液滴サイズが小さいことが図7に示された ことから液滴の分裂が数密度の増加と関連 するものと考えられる. 0.9~1.8ms の噴霧コ ア部において液滴数密度はおおよそ 30,000 1/mm³ のオーダーである.

図9は時間窓0.1ms毎の質量流量の空間分 布を示す.噴霧周囲に比べて噴霧軸の質量流 量が多いことが明確である.質量流量は0.9

Fig.10 Spatial distribution of velocity and Weber number; z=20mm

Fig.11 Probability density distribution of Weber number; z=20mm

~1.0ms で最大であり,このことは噴霧先端 で質量流量が最大であることを意味する.噴 射期間にわたる全燃料質量は式(6)による質 量流量の積分によって見積られる.L2F測定 により見積もられた燃料質量 2.1mg/ injection は重量法によって求められた燃料 質量 2.0mg/injection に近い値であった. (5) 図 10 は z=20mm における液滴速度 U, 空気速度 U_a ,相対速度 ΔU および液滴ウェー バー数 W_e の平均値の空間分布を示す.平均 液滴ウェーバー数の空間分布はやや非軸対 称であるものの噴霧外縁に向かって減少し ている.

図 11 は液滴ウェーバー数の確率密度分布 を示す. バグ分裂が生じるウェーバー数 12 以上の液滴がわずかに存在しており,また x=-0.8mm においてはウエーバー数が 10 前後 の液滴が観察される. 図 7 および図 8 におい て x=0.6mm, すなわち噴霧中心から噴孔径の 約 5 倍の位置で液滴分裂が示唆されており, バグ分裂が生じているものと考えられる.

5. 主な発表論文等

(研究代表者,研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計4件)

- 2) <u>植木弘信</u>,石田正弘,坂口大作,アミダオ ルウォレ,ディーセル噴霧コア部液滴の分 裂に及ぼす噴射圧の影響 - L2Fによるメ ガヘルツデータレート計測 -,自動車技 術会論文集, Vol.39, No.5 pp.53-58 (2008.09)
- 3) <u>H.Ueki</u>, M.Ishida, D.Sakaguchi and O.Amida, Measurement of High-Number-Density Droplets in Diesel Spray using Micro-Probe L2F with Mega-Hertz Data Acquisition, SAE Diesel Fuel Spray Injection and Sprays 2008, SP-2183,pp.79-88 (2008.04)
- 4) D.Sakaguchi, O.Amida, <u>H. Ueki</u> and M. Ishida, Measurement of Droplet Size Distribution in Core Region of High-speed Spray by Micro-probe L2F, Journal of Thermal Science, Vol.17, No.1, pp.90-96 (2008.02)

〔学会発表〕(計27件)

- (2) 簗瀬祥隆,村上洸貴,<u>植木弘信</u>,石田正弘, 坂口大作,ディーゼル噴霧コア部液滴の追いつき・追い越し特性の評価,日本機械学 会九州支部第64期講演論文集.No.098-1, pp.283-284 (2009.03)
- 2) 中島成吾, 松﨑泰樹, 植木弘信, 石田正弘,

坂口大作, マイクロプローブ L2F による ディーゼル噴霧内質量分布の評価, 日本 機械学会九州支部第 65 期講演論文集, No.098-1, pp.285-286 (2009.03)

- 3) Daisaku Sakaguchi, <u>Hironobu Ueki</u>, Masahiro Ishida, Taiki Matsusaki, Evaluation of Number Density of Droplets in Dense Region of Diesel Sprays Based on Single Droplet Sensing, Proceedings of the 12th Annual Conference of ILASS-Asia, pp.133-139 (2008.12)
- 4) 村上洸貴, 松崎泰樹, <u>植木弘信</u>, 坂口大作, 石田正弘, 燃料噴霧の L2F 計測に基づく ディーゼル燃焼解析, 第 46 回燃焼シンポ ジウム講演師(東, pp.222-223 (2008.12))
- 5) 坂口大作, 松崎泰樹, 中島成吾, <u>植木弘信</u>, 石田正弘, ディーゼル噴霧高数密度液滴群 における追い付き・追い越しの時間空間特 性, 第 17 回微粒化シンポジウム講演論文 集, pp.265-269 (2008.12)
- 6) D.Sakaguchi, <u>H.Ueki</u>, M.Ishida and O.Amida, Study of Heterogeneous Structure in Diesel Fuel Spray by Using Micro-Probe L2F, Proceedings of the 7th JSME-KSME Thermal and Fluids Engineering Conference, Paper No.I226 (2008.10)
- 7) 坂口大作,松崎泰樹,中島成吾,<u>植木弘信</u>, 石田正弘,ディーゼル噴霧コア部の液滴の 追い付き・追い越し特性,日本機械学会中 国四国支部・九州支部合同企画岡山講演会, No.085-2, pp.213-214 (2008.10)
- H. Ueki, M. Ishida, D Sakaguchi and O. Amida : Evaluation of Weber Number of Droplets in Dense Region of Diesel Fuel Spray, Proceedings of the Conference on Thermo- and Fluid Dynamic Processes in Diesel Engines, pp.101-112 (2008.09)
- 9) 村上洸貴, 松崎泰樹, 植木弘信, 石田正弘, 坂口大作, L2F 計測および KIVA 解析に よるディーゼル噴霧コア部における液滴 ウェーバー数の評価, 第78回マリンエン ジニアリング学術講演会講演論文集, pp.149-150 (2008.09)
- 10) D. Sakaguchi, <u>H. Ueki</u> and M. Ishida : Time-resolved Measurement of Droplets in Core Region of Diesel Fuel Sprays by Micro-probe L2F with Mega-hertz Data Acquisition, Proceedings of the 14th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Paper No. 11.2.1 (2008.07)
- 11) <u>H. Ueki</u>, M. Ishida, D. Sakaguchi and O. Amida, Measurement of Number Density Distribution in Dense Region of Diesel Fuel Spray by Micro-Probe L2F, Proceedings of the 7th COMODIA, International Conference on Modeling and Diagnostics for Advanced

Engine Systems, pp.625-632 (2008.07)

- 12) 坂口大作,<u>植木弘信</u>,石田正弘,アミダ オルウォレ,マイクロプローブ L2F によ るディーゼル噴霧コア部における液滴数 密度の瞬時計測,自動車技術会学術講演会 前刷集, No.78-08, p.11-16 (2008.05)
- 13) 中島成吾,中川将之,坂口大作,<u>植木弘</u>
 <u>信</u>,石田正弘,ディーゼル噴霧液滴の分裂
 に及ぼすウエーバー数の影響,日本機械
 学会九州支部第 61 期講演論文集, No.088-1, pp.321-322 (2008.03)
- 14) 簗瀬祥隆, アミダ・オルウォレ, 植木弘 信,石田正弘,坂口大作,燃料噴霧の計測 データに基づくディーゼル機関燃焼解析, 日本機械学会九州支部第61期講演論文集, No.088-1, pp.323-324 (2008.03)
- 15) 中島成吾,坂口大作,アミダオルウォレ, <u>植木弘信</u>,石田正弘,噴霧液滴の計測デー タに基づくディーゼル燃焼の KIVA-3 解 析,第45回燃焼シンポジウム講演論文集, A211, pp.174-175 (2007.12)
- 16) 坂口大作,簗瀬祥隆,中島成吾,<u>植木弘</u> <u>信</u>,石田正弘,ディーゼル噴霧コア部の液 滴数密度に及ぼす噴射圧の影響,第16回 微粒化シンポジウム講演論文集, pp.270-275 (2007.12)
- 17) D. Sakaguchi, <u>H. Ueki</u>, M. Ishida and S.Nakashima, Measurement of Droplet Number Density in Core Region of Diesel Spray by L2F, Proceedings of the 11th Annual Conference on Liquid Atomization and Spray Systems -Asia (ILASS-Asia), pp.116-123 (2007.11)
- 18) 坂口大作,<u>植木弘信</u>,石田正弘,中島成 吾,マイクロプローブL2Fによる液滴分 裂過程の高データレート計測,日本機械 学会第85期流体工学部門講演会講演論文 集,No.07-16, Paper No.1111, pp.1-4 (2007.11)
- 19) 植木弘信,石田正弘,坂口大作,アミダ オルウォレ,L2Fによる噴霧液滴分裂過 程のメガヘルツデータレート計測,日本 自動車技術会秋季大会,JSAE 20075662 (2007.10)
- 20) 坂口大作,<u>植木弘信</u>,石田正弘,L2F による高数密度液滴のメガヘルツデータレート計測,日本機械学会 2007 年度年次大会講演論文集,Vol.3, pp.209-210 (2007.09)
- 21) D.Sakaguchi, <u>H.Ueki</u>, M.Ishida and O.Amida, Measurement of High-Speed and High-Number-Density droples by Micro-Probe L2F with Meg-Hertz Data Acquisition, Proceedings of FEDSM2007 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, California USA, FEDSM2007-37219 (2007.07)

- 22) <u>H.Ueki</u>, M.Ishida, D.Sakaguchi and O.Amida, Measurement of droplet size distribution in core region of high-speed spray by micro-probe L2F, Proceedings of the 8th International Symposium on Experimental and Computational, Aerothermodynamics of Internal Flows (ISAIF8), ISAIF8-00127 (2007.07)
- 23) <u>H.Ueki</u>, M.Ishida, D.Sakaguchi and O.Amida : A Study of the effect of injection pressure on near-nozzle droplet atomization in diesel fuel spray using micro-probe L2F, Proceedings of 2007 JSAE/SAE international Fuels and Lubricants Meeting, JSAE 20077062, SAE 2007-01-7062 (2007.07)
- 24) <u>H.Ueki</u>, M.Ishida, D.Sakaguchi and O.Amida : Instantaneous measurements of high number-density droplets by micro-probe L2F, Proceedings of the 8th International Congress on Optical Particle Characterization (OPC2007), O-02, pp.47 (2007.07)
- 25) 坂口大作,中川将之,<u>植木弘信</u>,石田正 弘,マイクロプローブ・レーザ2焦点流速 計による噴霧液滴の速度とサイズの計測, 第44回日本伝熱シンポジウム講演論文集, Vol.II, pp.369-370 (2007-05)
- 26) 坂口大作, アミダオルウォレ, <u>植木弘信</u>, 石田正弘, 液滴の速度とサイズの計測デー タに基づく噴霧燃焼の数値シミュレーシ ョン,第44回日本伝熱シンポジウム講演 論文集, Vol.II, pp.371-372 (2007-05)
- 27) 中島成吾,<u>植木弘信</u>,石田正弘,坂口大 作,アミダオルウォレ,マイクロプローブ L2F によるコモンレールインジェクタ噴 孔近傍高数密度液滴の計測,自動車技術会 学術講演会前刷集,No.76-07, Paper No.20075023, pp.29-32(2007-05)

〔図書〕(計 0 件)

〔産業財産権〕
○出願状況(計 0 件)
○取得状況(計 0 件)
〔その他〕
なし
6.研究組織
(1)研究代表者
植木 弘信(UEKI HIRONOBU)
長崎大学・工学部・教授
研究者番号: 30160154
(2)研究分担者
なし
(3)連携研究者