```
研究種目:基盤研究 (C)
研究期間: 2007~2008
課題番号: 19592453
研究課題名(和文) 3 次元画像を用いたエキスパート看護師の移動介助動作および重心移動
の解析
研究課題名 (英文) Analysis of the transfer care and the center of gravity movement
of the nurse expert with a three-dimensional image
研究代表者
    塚本 尚子 (TSUKAMOTO NAOKO)
    横浜市立大学•医学部•准教授
    研究者番号 40283072
```

研究成果の概要：
看護師の熟練した移動介助技術の特徴を明らかにすることを目的に， 3 次元画像，床反力板，筋電図等の指標を導入した実験を繰り返し，情報人間工学の手法を用いてモデル化を試みた。次に，これらの成果が，今後介護を担っていく高齢者にとつても有効であるか否かを検証する ため，高齢者を対象とした実験を行った。高齢者場合，考慮すべき個人差も多く存在するが，看護師の熟練技術は，高齢者の習得も可能であり，身体的負荷の軽減にも有効である可能性が示唆された。

交付額
（金額単位：円）

	直接経費	間接経費	合 計
2007 年度	$2,400,000$	720,000	$3,120,000$
2008 年度	$1,100,000$	330,000	$1,430,000$
年度			
年度			
年度			$4,550,000$
総 計	$3,500,000$	$1,050,000$	

研究分野：医歯薬学
科研費の分科•細目：看護学•基礎看護学
キーワード：看護技術

1．研究開始当初の背景

療養者の移動や移乗技術は，重要な基礎看護技術のひとつであり，看護師はこの技術を習得し，常に実践で活用している。しかし，近年，入院期間の短縮化に伴い，これまで病院で介助を受けていた介護度の高い療養者 も，次第に在宅へと移行する傾向がある。こ うした流れの中にあって，移動技術はもはや専門職のみが身につける特殊な技術ではな く，国民の誰もが使うことのできる技術へと転換していく必要がある。そこで看護職は，

これまで培ってきた技術を広く教授してい く立場にある。しかし，これまでの移動技術 は明確なエビデンスを欠いている。そこで本研究では，工学部と連携してエキスパート看護師の移動動作と初学者の移動動作を，3次元の高精細ビデオで多視点取得し比較する ことによってその違いを明らかにする必要性があると考えた。

2．研究の目的
（1）工学部と 連携してエキスパート看護

師の移動動作と初学者の移動動作を，3 次元 の高精細ビデオで多視点取得し比較するこ とによってその違いを明らかにすることを目的とする。
（2）研究（1）で得られた成果が，今後多く介護 を担うことになるであろう高齢者にとって も習得可能であり，身体負荷を軽減できるも のであるかどうかを明ら かにすることを目的とする。

3．研究の方法
（1）エキスパート看護師の体位変換，車椅子への移乗動作を撮影し解析する。具体的方法（1）エキスパート看護師の体格，体型を可動性のレーザー測定装置で計測し，個別人体 を反映した3次元幾何モデルを作成する。（2） ベッド上の移動動作を多視点で取得する。 ③動作時に看護師に最小のLED発光マー カを装着し，これを用いて動作解析を行い定量的データを取得する。（4）動作時にフォ ースプレートに立ち，両足にかかる力の大 きさを時系列で取得する。（5）同時にベッド の 4 つの脚に圧力センサーをつけておき， 4 つの脚にかかる力の大きさを時系列で取得することで，被介護者の重心位置を明ら かにする。（6）上記工程を基に大まかな人体 の各部にかかる力の時系列解析を行うプロ グラムを作成する。
（2）同様の手続きを使って，一般看護師，看護の初学者者，未経験者をそれぞれ被験者として実験を実施する。
（3）上記（1）～（2）の結果について情報人間工学的手法を用いてモデル化を行い，ここで得 られた成果を活用して，高齢者5名（70 歳） を対象に同様の実験を実施する。

4．研究成果

（1） 3 次元人体モデルを用いた介護動作力学解析データベースシステムの構築（高山拡•大山英•佐藤貴子•有澤 博によって2007年度の医療情報処理システム研究会におい て発表された研究成果）
＜研究のあらまし＞この論文では，詳細人体 モデルを用いた人体に関する力学解析・シミ ユレーションを可能にするシステムを提案 する。このシステムを応用し，介護作業のプ ロセスを人体モデルで再現すれば，介護者や被介護者の身体負荷評価や最適動作設計な どが可能となり有用性は計り知れない。この システムを構築するにあたり，人体モデルの詳細度とそのスキーム，最大筋力や動作等の

人体内部，外部のパラメータを現実世界から計算機上に取得する手法についてそれぞれ提案し，それらを統合して構築したシステム において実際に横浜市立大学看護学科の協力の下，腰部負荷評価の実験を行いその有効性を検証した。

以下の図 1 は，実験風景であり，図 2 は詳細人体モデルによる力学解析シミュレーシ ョンシステムの概略図である。図2に示す 2 つのデータベースを用いることで個人の構造を反映した力学解析シミュレーションを行うことが出来る。

図 1 実験装置•実験場面

図2 シミュレーションシステムの構成図
（2）介護動作評価システムのためのモダリ ティデータ再生ソフトウェアの製作（伊藤秀一•野村明美•有澤博•根本明宜によっ2008年度の医療情報処理システム研究会におい て発表された研究成果）
＜研究のあらまし＞近年，従来人の手によ って行われてきた人間工学の分野の問題を情報技術を用いて定量的に評価することが注目されている。介護の現場においても，負担軽減のために介護者，被介護者にかかる負

荷評価が重要になってきている。評価を行う際に必要となるデータは多岐にわたるため様々な計測機器が必要になるが，それらのデ ータを統合的に扱うことは難しい。しかし，時間的•空間的に統一的に扱う事が出来てい ないと解析の結果が意味を持たない。そこで，本論文では各計測機器の同期について述べ， さらに結果の詳細について直感的にわかり やすくするために各計測機器の同時再生ビ ユーアーの構築を行った。
以下の図 3 は，この研究によって報告した同時再生ビューアーの構造図である。

図 3 介護動作評価システムの全体図
（3）起き上がり援助動作における介助者の腰部負荷評価—経験者と未経験者の比較—
（野村明美，塚本尚子，船木由香によって 2008 年度第 49 回日本人間工学会大会におい て報告された研究成果）
＜研究のあらまし＞人間がより合理的な動作を行うための動作解 評価は人間工学やリ ジャビリテーション，看護学などの分野で研究が行われてきた。特に，腰痛は移動動作を介助する人にとって深刻な問題であるため腰部の負荷を推測している研究 は多い。しか しこれらの研究は，動僅 2 次元の動きとみ なしているため，3 次元の動きには対応して おらず負荷評価において，正確さの点で課題 を残している。そこで本研究は，腰椎をモデ ル化した 3 次元人体モデルを作成し，それ を実装して，経験者の移動動作と未経験者の動作を，比較することによって腰部負荷の違 いを明らかにすることを目的とした。この結果，経験者は，トルクの絶対値が小さく，巧 くトルクを軽減している。さらに圧迫方向の力が大きく，ずれる方向つまりせん断力が少 なく，腰椎のすべり症になりにくいように，起き上がり動作を行っていることがわかる。

一方未経験者は，せん断力が大きく，圧迫方向の力が少ないため，腰部に負荷が大きいと言える。図は，第5腰椎にかかるトルク（図 4），圧迫方向の力の絶対値（図5）せん断力 の絶対値（図 6 ）についての結果を示したも のである。

図4 トルクの絶対値

図5 圧迫方向の力の絶対値

図6 ずれる方向の力（せん弾力）の絶対値

5．主な発表論文等

（研究代表者，研究分担者及び連携研究者に は下線）

〔雑誌論文〕（計 1 件）
伊藤秀一，清水英臣，野村明美，佐藤貴子，有澤博，負荷評価の脊柱構造に着目した人体 モデルの構築，情報処理学会研究報告， Vol2008，No88，199－204，2008．

〔学会発表〕（計 3 件）
①高山 拡，大山英，佐藤貴子，有澤 博；3次元人体モデルを用いた介護動作力学解析 データベースシステムの構築，医療情報処理 システム研究会 MIPS2008，平成2年3月，東京。
（2）野村明美，塚本尚子；起き上がり援助動作 における介助者の腰部負荷評価—経験者と未経験者の比較—，第 49 回日本人間工学会，平成 20 年 6 月，東京。
（3）伊藤秀一，野村明美，有澤博，根本明宜；介護動作評価システムのためのモダリティ データ再生ソフトウエアの製作，医療情報処理システム研究会 MIPS2009，平成 21 年 3月，東京。

6．研究組織
（1）研究代表者
塚本 尚子（TSUKAMOTO NAOKO）横浜市立大学•医学部•准教授研究者番号： 40283072
（2）研究分担者
野村明美（NOMURA AKEMI）
横浜市立大学•医学部•准教授
研究者番号：10290040
根本明宜（NEMOTO AKINOBU）
横浜市立大学•医学部•准教授
研究者番号：20264666
有澤 博（ARISAWA HIROSHI）
横浜国立大学•環境情報研究院•教授
研究者番号： 10092636
山本敬子（YAMAMOTO KEIKO）
横浜市立大学•医学部•准教授
研究者番号：70269380
（3）連携研究者
舩木由佳（FUNAKI YUKA）
横浜市立大学•医学部•助教
研究者番号： 10389942

