様式 C-19

科学研究費補助金研究成果報告書

平成 21 年 6 月 26 日現在

研究種目:若手研究(目	3)
研究期間:2007~2008	3
課題番号:19760141	
研究課題名(和文)	複雑現象工学による燃焼不安定の予測と制御
研究課題名(英文)	Prediction and control of combustion instability based on nonlinear dynamics
研究代表者 後藤田 浩 (Gotoda Hiroshi) 立命館大学・理工学部・准教授 研究者番号:00434712	

研究成果の概要:

非線形カオス力学の視点から、旋回流を伴う希薄予混合火炎の不安定挙動の決定論的性質を 明らかにし、火炎面挙動の短期予測を行った.相互情報量、順列エントロピー、相関次元、サロ ゲート法を組み合わせた並進誤差の特徴を調べることによって、火炎面挙動は中次元程度以上 の複雑なダイナミックスを有するが、決定論的カオスが存在することが明らかとなった.また、 非線形予測法を用いることで、火炎面挙動の短期予測の可能性が示された.

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	2,900,000	0	2,900,000
2008 年度	500,000	150,000	650,000
総計	3,400,000	150,000	3,550,000

研究分野:工学 科研費の分科・細目:機械工学・熱工学 キーワード:燃焼,反応流,複雑系,カオス,熱流体

1. 研究開始当初の背景

近年, 燃焼工学分野においても, ガスタービン, パルス燃焼, 内燃機関などの燃焼現象の物理と カオスの関連性が注目されつつある. しかしな がら, 火炎挙動から決定論的カオスの性質を時 系列カオス解析から適切に抽出し, 刻々と変化 する燃焼状態の時系列信号を予測 ·制御する 研究例は, 国内外で報告されていない. このよ うな研究背景に基づいて本研究テーマの着想 に至った.

2. 研究の目的

希薄予混合燃焼は環境にクリーンな燃焼方 式として近年着目されている.しなしながら, 燃焼不安定が生じやすく,燃焼状態の適切な予 測と制御が困難とされる.そのため,超希薄 条件下で安定に燃焼を維持できる燃焼制御 技術の確立が強く望まれている.非線形カオ ス力学に基づく時系列解析は,物理系のみな らず生命科学・情報系などの幅広い分野で着 目されており,複雑に変動する非線形現象の 解明や予測・制御に対して適用されつつある. 燃焼は流動,熱・物質拡散,化学反応が相互 に作用し合う複雑な非線形現象であること から,非線形力学の考え方が燃焼ダイナミッ クスの取り扱いに対しても有効であると思 われる.そこで,本研究では,非線形カオス 力学の視点から,時間的・空間的に不規則に 変動する火炎面挙動の決定論的性質を明ら かにし,火炎面挙動を短期的に予測すること を目的とする.助成期間では,希薄限界付近 で形成される旋回流予混合火炎の不安定挙 動の情報論的エントロピー,状態空間内の軌 道の自己相似性と不安定性を明らかにする ことに焦点を当て,火炎面挙動の短期予測の 可能性を明らかにする.

3. 研究の方法

3.1 実験条件及び方法

本研究では、旋回流予混合火炎を形成させ ることが可能な燃焼バーナーを用いる.予混 合気としてメタン/空気混合気を使用し、当 量比φを 0.60 から 0.80 まで 変化させる. バ ーナー管出口から噴出される予混合気の断 面平均速度を U₀ = 1.0 m/s から 1.8 m/s まで変 化させ、予混合気に旋回流を与える(スワー ル数 S = 0.45). また、本研究では、実験装置 を上下に逆転させた場合、すなわち、逆重力 場での火炎面挙動を調べる.火炎面の可視化 にはレーザートモグラフィー法⁽¹⁾を用い、可 視化された火炎面の2次元断面像は高速度ビ デオカメラによって毎秒1000コマで10秒間 撮影される(データの総数 N = 10,000). なお, 2 次元断面像の空間分解能は 1 pixel = 0.04 mm とする、バーナー管の中心軸上における 火炎面の平均位置からの変動値Δv_f (mm)を測 定し, *Δy_f* の時間変動に対して時系列カオス 解析を適用する.

3.2 時系列カオス解析

3.2.1 相互情報量

カオスの特徴の一つである自発的な情報消 失は、相互情報量を時間遅れの関数として計 算することで評価できる.まず、u を確率変 数と定義し、 Δy_f の実現値の集合を $U = \{u(t_i)\}$ 及び各要素 $u(t_i)$ に対して、 τ の時間遅れを持つ 実現値の集合 $V = \{v(t_i) = u(t_i + \tau)\}$ を考える. このとき、相互情報量 I(V;U)は情報エントロ ピーH を用いて式(4)となる.I(V;U)は U が既 知であるとき、V の分布の複雑さについて引 き出すことのできる情報量を表す.

$$H(U) = -\sum_{u \in U} p(u) \log_2 p(u) \qquad \cdots (1)$$

$$H(V) = -\sum_{v \in V} p(v) \log_2 p(v) \qquad \cdots (2)$$

$$H(U,V) = -\sum_{u \in U, v \in V} p(u,v) \log_2 p(u,v) \qquad \cdots (3)$$

$$I(V;U) = H(U) + H(V) - H(U,V) \quad \dots(4)$$

ただし, *p*(·), *p*(·,·)を確率分布関数, 結合確率 分布関数とする.

3.2.2 状態空間

火炎面の位置変動 Δy_f は、式(5)で示される埋 め込み次元定理を用いて、時間遅れ座標系へ 変換される. t_i (i = 1, 2, ..., N) を変化させる ことによって、D次元の状態空間内に軌道を 描くことができる.

 $X_i = (\Delta y_f(t_i), \Delta y_f(t_i + \tau_0), \dots, \Delta y_f(t_i + (D-1)\tau_0))$...(5)

 X_i を状態空間内の軌道上の点(位置ベクトル), τ_0 を埋め込み時間, Dを埋め込み次元とする. 本研究における埋め込み時間 τ_0 は $\Delta y_i(t_i)$ の相 互情報量 I が最初に極小値となる時間とする.

3.2.3 順列エントロピー

火炎面挙動の時間変動の乱雑さを明らか にするために、Kolmogorov-Shinai(KS)エント ロピーと等価である順列エントロピーを用 いる.まず、 $\Delta y_i(t_i)$ を 1 列×(*N* - *D*)行の横ベク トルで表す.次に、この横ベクトルについて、 順列 π の実現度数 $m(\pi)$ を求める.ただし、 π を *D*次元の順列*D*!と表す.式(6)で示される π の 相対実現度数 $p(\pi)$ を用いることで、 $\log_2 D$!で 規格化した順列エントロピーhは式(7)となる. このとき、 $0 \le h \le 1$ が成り立ち、h = 1のとき、 時間変動の乱雑さは完全なランダム過程に 対応する.

$$p(\pi) = \frac{m(\pi)}{N - D} \qquad \cdots (6)$$

$$h = \frac{-\sum_{\pi} p(\pi) \log_2 p(\pi)}{\log_2 D!} \qquad \cdots (7)$$

3.2.4 相関次元法

フラクタル次元の一種である相関次元の算 出では、まず式(8)で示される相関積分 *C_l(ε)*, すなわち、*X_i* と *X_j*の二点間距離の累積頻度関 数を計算する.

$$C_{I}(\varepsilon) = \frac{1}{N^{2}} \sum_{\substack{i,j=1\\i\neq j}}^{N} H(\varepsilon - \left\| X_{i} - X_{j} \right\|) \qquad \dots (8)$$

$$\left\|X_{i} - X_{j}\right\| = \sqrt{\sum_{k=1}^{D} X_{i+(k-1)\tau_{0}} - X_{j+(k-1)\tau_{0}}} \quad \dots (9)$$

ただし、 ε は D 次元の状態空間内の X_i を囲む 超球の半径, $H(\cdot)$ はヘビサイド関数とする.

 $C_{l}(\varepsilon)$ を $\varepsilon^{D_{c}(D)}$ でスケーリングし、横軸に log ε を、縦軸に log $C_{l}(\varepsilon)$ をとったグラフの直線部 分の傾きから相関指数 $D_{c}(D)$ を求める. この とき、中次元の状態空間に対しても明確なス ケーリング領域を得るために、式(10)を用い てそれぞれの埋め込み次元に対して最適な 遅れ時間 τ_{0} を決定する. なお、本研究では、 τ に対する S_{d} の 2 階微分がゼロ($d^{2}S_{d}/d\tau^{2} = 0$)に なるときの τ の値を τ_{0} とする.

$$S_{d} = \frac{1}{N} \sum_{i=1}^{N} \sqrt{\sum_{j=1}^{D-1} (\Delta y_{f} (t_{i} + j \cdot \tau) - \Delta y_{f} (t_{i}))^{2}}$$

...(10)

それぞれの D について得られた相関指数 $D_c(D)$ が一定に飽和するときの値を相関次元 D_c とする.

$$D_c = \lim_{D \to \infty} D_c(D) \qquad \cdots (11)$$

3.2.5 並進誤差

状態空間内の軌道の不安定性を明らかにす るために、状態空間内の近接する軌道の平行 度を測定するアルゴリズムを用いる.まず、 時刻 t_i の状態空間内にある位置ベクトル $X(t_i)$ について、K 個の最近傍ベクトル $X(t_j)$ (j = 1, 2, ..., K)を探す.ただし、K = 4 とする.最近傍 ベクトル $X(t_j)$ のそれぞれについて、 $T\tau_0$ だけ時 間が経過した後の位置ベクトルは $X(t_i+T\tau_0)$ に なる.このとき、時間の経過に伴う各軌道の 変化は式(12)によって近似的に表すことがで き、 $v(t_i)$ の方向の分散は並進誤差 E_{trans} として 式(13)で表せる.ただし、T を時間ステップと する

$$v(t_j) = X(t_j + T\tau_0) - X(t_j) \qquad \cdots (12)$$

$$E_{trans} = \frac{1}{K+1} \sum_{j=0}^{K} \frac{\left\| v(t_j) - \hat{v} \right\|^2}{\left| \hat{v} \right|^2} \qquad \dots (13)$$

$$\hat{v} = \frac{1}{K+1} \sum_{i=0}^{K} v(t_j) \qquad \cdots (14)$$

なお、 E_{trans} の推定における統計誤差を抑える ために、無作為に選択したM個の $X(t_i)$ に関す る E_{trans} の中間値を求める操作をQ回繰り返 し、Q個の中間値の平均値で E_{trans} を表す、状 態空間内の軌道に決定論的な特徴が観察さ れるにつれて、 $E_{trans} \rightarrow 0$ となっていく.

3.2.6 サロゲート法

カオス特性を検証する統計的仮説検証法 として、本研究ではサロゲート法の一つであ る AAFT サロゲート法(Amplitude Adjusted Fourier Transform Surrogated Method)を用いる. AAFT サロゲート法によって得られる時系列 データの標本頻度分布、パワースペクトル、 自己相関関数はオリジナルデータのものと 同一となる.本研究では、オリジナルデータ と 20 本のサロゲートデータから得られる並 進誤差の値を比較する.

3.2.7 非線形予測法

得られた時系列データに決定論的な特徴が 存在しているとする. もし, 現在の挙動と似 たような挙動が過去にも観察されていたな らば, 現在の挙動が発展していく様子は, 過 去の挙動と似たものになると考えれる. 本研 究では, この考え方に基づいた非線形予測法 を用いる.

まず、時系列データを半分に分け、火炎面 挙動を予測のためのデータベースとして前 半の時系列データを用い、予測された時系列 データと比較するためのデータとして後半 の時系列データを用いる.次に、予測される ベクトルを $X(t_p)$ として、T ステップ後に $X(t_p)$ キ τ_0T)に移るとする.そして、 $X(t_p)$ の近傍ベク トル $X(t_j)$ は、T ステップ後に $X(t_j + \tau_0T)$ に移る. このとき、式(15)で示されるように、 $X(t_j + \tau_0T)$ をベクトル間距離 d_i の指数関数で重みづける ことで、T ステップ後の $X(t_p + \tau_0T)$ を求めるこ とができる.なお、ベクトル間の距離 d_j はユ ークリッドの距離から算出する.

$$X(t_{p} + \tau_{0}T) = \frac{\sum_{j=1}^{D+1} X(t_{j} + \tau_{0}T) \exp(-d_{j})}{\sum_{j=1}^{D+1} \exp(-d_{j})} \quad \dots (15)$$

$$d_{j} = ||X(t_{p}) - X(t_{j})|| \cdots (16)$$

4. 研究成果

時間遅れ τ の変化に対する相互情報量 Ι と 自己相関関数 C の変化を図1 に示す. 断面平 均流速 U₀ = 1.0 m/s のとき, C は小さな振幅を 有しながら、約100 msec の時間間隔で周期的 に振動する. このとき, I はτ が約 10 msec で 急激に減衰し、ほぼゼロに漸近する、火炎面 挙動には 10 Hz 程度の周期的な振動が支配的 であるのにも関わらず,相互情報量は自発的 に消失されていく. 他方, U0が 1.8 m/s まで増 加すると, C は周期的に振動することなく, 遅れ時間の増加に伴って緩やかに減衰して いくが, I は U₀ = 1.0 m/s とほぼ同様の傾向を 示す. これらの結果から、火炎面挙動の周期 的な振動は、予混合気の慣性力の増加に伴っ て著しく小さくなるが、火炎面挙動がカオス 的と示唆できる情報量の自発的消失は残っ ていると思われる.

図2に順列エントロピーhと埋め込み次元Dの関係を示す.なお、火炎面挙動の乱雑さを評価する指標として、ローレンツ方程式によって得られる低次元カオスの順列エントロピーの結果も示す. $U_0 = 1.0 \text{ m/s}$ のとき,hはD = 7 で約0.3 に収束する.他方、 U_0 が1.8 m/s まで増加すると、hは約0.4まで増加する.これらの値は、低次元の決定論的カオス(h = 0.2程度)の場合よりも高い.つまり、本研究で形成される火炎面挙動の時間変動は、低次元カオスよりも乱雑である.しかしながら、完全なランダム過程の場合(h = 1.0)よりもhの値は十分小さく、火炎面挙動に決定論的な特徴は存在する.

図3に相関指数D_c(D)と埋め込み次元Dの関 係を示す.もし、埋め込み次元の増加に対し て軌道の幾何学形状に自己相似性が存在し ないのであれば、相関指数は図中の破線に従 い,相関次元 D_cを決定することができない. $U_0 = 1.0 \text{ m/s}$ のとき,相関指数は $D \ge 8$ で一定 となり,相関次元 D_c は約 7.5 となる. ローレ ンツ方程式から得られる低次元カオスの相 関次元の値は約 2.1 であることから,自己相 似性については中次元程度のカオスである ことがわかる. しかしながら, $U_0 = 1.8 \text{ m/s} \sigma$ 場合,相関指数はDの変化に対して一定にな ることなく、10次元の状態空間内の軌道に自 己相似性は観察されなくなる、このことは、 予混合気の増加に伴って火炎面挙動が高次 元カオスになっていくことを示唆している.

サロゲート法の有無による並進誤差 E_{trans} と埋め込み次元D の関係を図4 に示す. $U_0 = 1.0$ m/s のとき、オリジナルデータの E_{trans} は D の増加に伴って単調に減少し、D が約 7 を超えるとほぼ一定の値(≈ 0.1)に漸近してい

Fig. 1: Autocorrelation function C and Mutual information I as a function of the time lag τ

Fig. 2: Normalized permutation entropy h as a function of the embedding dimension D

Fig. 3: Correlation dimension D_c as a function of the embedding dimension D

く.この定常値は、不規則な変動をもたらす ダイナミックスの決定論的な特徴(隣り合う 軌道が局所的に平行であること)が火炎面挙 動に存在していることを意味している.D≥7 で Etrans がほぼ一定の値に漸近するのは、7 次元以上で構築された状態空間の軌道群で、 軌道の交差が著しく減少するためである.こ のとき、サロゲートデータの E_{trans} の値はそれ ぞれの D に対してオリジナルデータと一致 していない. つまり、「火炎面挙動は線形確 率過程で生み出されたが、非線形な観測関数 を介して観察されたため、カオス的な振る舞 いをしている」という帰無仮説を棄却するこ とができる. U₀ が 1.8 m/s まで増加すると, 埋め込み次元に対する Etrans の値も増加する が,約 0.3 に漸近する. このとき, サロゲー トデータの Etrans の値はオリジナルデータと ほぼ同じであるが、t 検定による統計推定量 の値は2.97 であり、棄却の範囲内である.オ リジナルデータの Etrans の値はローレンツ方 程式から得られる低次元カオスの場合(Etrans = 0.01)と比較して大きいが, ランダム過程の 場合よりも十分小さい.よって、本研究で形 成される火炎面挙動は中程度以上のカオス であり、軌道の平行性に決定論性が存在する と考えられる.

図 5 に U_0 = 1.0m/s のときに形成される火炎 面挙動を短期的に予測した結果を示す. t = 30 ms まで実測値(実線)と予測値(破線)がほぼ一 致していることがわかる.しかしながら, t が 30 ms を越えると,両者は一致しなくなって くる.このことは,決定論的カオスの重要な 特性の一つである,短期予測可能性 (Short-term predictability)と長期予測不能性 (Long-term unpredictability)が存在しているこ とを示している.火炎挙動を予測できる時間 スケールは短いが,非線形カオス力学に基づ いて火炎挙動を短期的に予測することが可 能であると思われる.

5. 主な発表論文等

〔雑誌論文〕(計2件)

<u>Hiroshi Gotoda</u>, Takaya Miyano and Ian G Shepherd, Experimental investigation on dynamic motion of lean swirling premixed flame generated by change in gravitational orientation, *Physics of Fluids*, 2009 (投稿中), 査読あり.

<u>Hiroshi Gotoda</u>, Yuta Asano, Keng Chuah and Genichiro Kushida, Nonlinear Analysis on Dynamic Behavior of Buoyancy-Induced Flame Oscillation under Swirling Flow, *International Journal of Heat and Mass Transfer*, 2009 (印刷 中), 査読あり.

Fig. 4: Variation in translation error E_{trans} as a function of embedding dimension D

Fig. 5: Prediction of flame front fluctuation

〔学会発表〕(計8件)

<u>Hiroshi Gotoda</u>, Yuta Asano, Keng Chuah and Genichiro Kushida, Dynamic Behavior of Buoyancy-Induced Flame Oscillation under Swirling Flow, 22 th International Colloquium on the Dynamics of Explosions and Reactive Systems, Minsk, Belarus, July, 2009 (発表予定), 査読あり.

<u>Hiroshi Gotoda</u>, Takaya Miyano and Ian G Shepherd, Dynamic behavior of swirling premixed flame generated by change in gravitational orientation, 4th *European Combustion Meeting* 2009, Vienna, Austria, April, 2009, 査読あり. <u>Hiroshi Gotoda</u>, Takaya Miyano and Ian G Shepherd, Experimental investigation on dynamic behavior of swirling premixed flame generated by change in gravitational orientation, *Gordon Research Conference 2008*, *Oscillation & Dynamic Instabilities in Chemical Systems*, Waterville, USA, July, 2008, 査読あり.

<u>Hiroshi Gotoda</u> and Ian G Shepherd, Effects of buoyancy on lean premixed flame on a rotating Bunsen burner, 21 th International Colloquium on the Dynamics of Explosions and Reactive Systems, Poitier, France, July, 2007, 査読あり.

新木本 寛之, <u>後藤田 浩</u>, 宮野尚哉, 旋回 流を伴う希薄予混合火炎のカオス特性, 第 46 回日本伝熱シンポジウム, 京都, 2009, 査読無 し.

新木本 寛之, <u>後藤田 浩</u>, 宮野尚哉, 旋回 流中に形成される希薄予混合火炎のカオス特 性, 第45回燃焼シンポジウム, 京都, 2009, 査 読無し.

<u>後藤田</u>浩, 宮野尚哉, Ian G Shepherd, 旋 回流中に形成される希薄予混合火炎のカオス 的挙動,第 44 回燃焼シンポジウム, 仙台, 2007, 査読無し.

<u>後藤田 浩</u>, 宮野尚哉, Ian G Shepherd, バ ーナーの回転を伴う希薄予混合火炎に及ぼす 浮力の影響, 日本機械学会 熱工学コンファ レンス, 京都, 2007, 査読無し.

6. 研究組織

(1)研究代表者
後藤田浩(Gotoda Hiroshi)
立命館大学・理工学部・准教授
研究者番号:00434712