科学研究費補助金研究成果報告書

平成21年 5 月 29 日現在

研究種目:若手研究(B)研究期間:2007~2008 課題番号:19790239

研究課題名(和文) ATL 細胞でのヒ素による NF-κB 活性抑制と survivin 発現抑制の

分子機序

研究課題名(英文) The mechanism of suppression of NF- κ B activity and

survivin expression by sodium arsenite in ATL cells

研究代表者

車 暁芳 (CHE XIAO-FANG)

鹿児島大学・大学院医歯学総合研究科・助教

研究者番号:10437973

研究成果の概要:

成人 T 細胞白血病(ATL)は抗癌剤治療抵抗性が高いため、予後は極めて不良である。我々は、アポトーシスを抑制する因子である survivin が ATL、特に急性型 ATL に高発現することとヒ素は ATL 細胞の survivin 発現レベルを低下させることを見出した。Survivin の発現は、ATL 細胞の抗癌剤耐性の一つの要因と考えられ、ATL 治療の標的分子として注目されている。今回の研究で、ヒ素が $I\kappa B$ - α の分解を抑制することによって、NF- κB の核への移行を阻害し、NF- κB を介する survivin の転写を抑制し、ATL 細胞のアポトーシスを誘導したことは明らかにした。また、Survivin が XIAP と結合する部位(15-38aa)を標的としたオリゴペプチドは ATL 細胞株 S1Tと MT2 の細胞増殖を抑制し、アポトーシスを誘導することを見出した。このペプチドによる ATL 細胞のアポトーシス誘導のメカニズムを解明すれば、ATL の新しい治療法の開発に貢献できると考えている。

交付額

(金額単位:円)

			(亚的十四・11)
	直接経費	間接経費	合 計
2004年度			
2005年度			
2006年度			
2007年度	1, 700, 000	0	1, 700, 000
2008年度	1, 600, 000	480, 000	2, 080, 000
総計	3, 300, 000	480,000	3, 780, 000

研究分野:分子腫瘍学

科研費の分科・細目:基礎医学・病態医化学

キーワード:ATL、survivin、NF-κB、sodium arsenite

1. 研究開始当初の背景

(1) 成人 T 細胞白血病 (ATL) は、1976年に高月清らによって発見、命名された疾患である。レトロウイルス、腫瘍ウイルスであるHTLV-1 (ヒト T 細胞白血病ウイルス I 型)の感染により発症する腫瘍性疾患である。日本

では西日本、特に九州にHTLV-1 感染者が多く、HTLV-1 に感染している人の 0.07%が 40~60年の潜伏期を経て成人 T細胞白血病を発症する。HTLV-1 のコードする Tax は ATL 発症の初期段階に主要な病原因子である。Tax は強力な転写因子で、ウイルス遺伝子の転写を活性化させる一方、CREB、NF-κBおよび

SRF などの細胞の遺伝子の発現も制御する。 これらの転写因子が活性化され、細胞の増殖、 トランスフォメーションを促進し、悪性化を 引き起こす。ATLは急性型、リンパ腫型、慢 性型とくすぶり型の4種類と急性転化型の1 つの病態に分けられる。慢性型とくすぶり型 ATL は治療しないで、経過を観察するが、急 性型とリンパ腫型 ATL は通常、ビンクリスチ ン、アドリアマイシン、エトポシドなどの抗 がん剤併用療法で治療が行われる。しかしな がら治療抵抗性のため、ATL の予後は極めて 不良である。平均生存期間は約1年に過ぎず、 新しい治療法の開発が待ち望まれている。 ATL の薬剤耐性のメカニズムは P-糖蛋白質、 MRP1、LRP などの発現のほかに、Tax による NF-κBの活性化も、ATL 細胞のトランスフォ メーションとアポトーシス抵抗性に重要な 役割を果たしている。ほとんどの ATL 症例の 末梢血には Tax の発現が見られないにもかか わらず、NF-κBが恒常的に活性化している。

(2) NF-κBファミリーはRel ホモロジードメ インをもつ NF-κ B/Rel Proteins とアンキリ ンリピートを持つ IκB Proteins からなる。 細胞に一番多く存在するのは p65 と p50 のへ テロダイマーである。通常 p65/p50 ヘテロダ イマーは I κ B α と結合して不活性化状態 で細胞質に局在する。HTLV-1 などのウイルス 感染や carcinogen、アポトーシス誘導剤など の刺激によって IKK 複合体が活性化され、 p65/p50 と結合する $I \kappa B \alpha$ がリン酸化され、 ユビキチン化され、プロテアソームにより分 解される。残された p65/p50 は核に移行し、 標的遺伝子の発現を誘導する。 NF-κBはア ポトーシス抑制、細胞増殖、 血管新生、免 疫、炎症反応などに重要な役割を果たしてい る。HTLV-1のTax蛋白質は細胞質と核の両方 で NF-κBの活性化に寄与している。細胞内 では、TaxはIKKyあるいはIKKy上流のMEKK1、 NIK と結合し、IKK 複合体を活性化する。Tax は $IKK\alpha$ 、 $IKK\beta$ にも直接結合でき、それらの 分子のキナーゼ活性を亢進させる。また直接 I κ B α、β に結合して I κ B α、β の分解を促 進する。核内では、NF-κBに結合してその 2量体化を促進して転写活性を亢進する。 Tax は CBP/P300、P/CAF などの NF-κB のコア クチベーターとも結合できる。このことによ り NF-κB とそのコアクチベーターとの結合 を促すことにより NF-κB の転写活性を増強 する。アポトーシス抑制因子の survivin は $NF-\kappa B$ の標的遺伝子の一つである。

(3) Survivin は胎児期を除くとほとんどの正常細胞で見られないが、各種の固形腫瘍や白血病細胞で高発現する。Survivin は、健常人の末梢血で検出されなかったが、ATL 症例、ATL 細胞株とHTLV-1をトランスフォームした細胞で survivin mRNA が高発現することが報告された。survivin の発現は癌の進行と予後のマーカーだが、ATL においても survivin 高発現症例の平均生存期間 6.4ヶ月に対して、survivin 低発現症例は 18ヶ月であった。survivin はATL において高発現し、予後に関わる因子であることが示唆された。survivin は抗アポトーシス蛋白質である IAP

(inhibitor-of-apoptosis) ファミリーのメ ンバーであり、17q25に位置し、142アミノ 酸、分子量 16.5KDa の小さい分子である。 Survivin は、一つの BIR 領域を有し、C 末端 に coiled coil と呼ばれるヘリックス構造を 持ち、微小管と結合し、Ring finger 領域が ないにも関わらずユビキチン化される、など の特徴を有している。Survivin はホモダイマ ーを形成して働いている。Survivin は細胞分 裂の調節とアポトーシス抑制の二つの機能 を持っている。細胞分裂の metaphase と anaphase において、survivin は主に二つの プールに局在する。一つは、直接的に中心体、 metaphase の微小管、anaphase の紡錘体と結 合し、微小管のダイナミックを調節する。も う一つは、Aurora B キナーゼ、INCENP、 Borealin と結合し chromosomal passenger complex (CPC) を形成して、metaphase 染色 体のキネトコアに局在し、染色体分裂と細胞 質分裂を調節する。形成された CPC のキネト コアへの正確な局在と微小管の安定化は両 極性紡錘体形成に重要である。Survivin はカ スパーゼ-3、7、9と結合し、カスパーゼ-3、 7、9の活性化を阻害することによってアポト ーシスを抑制するができるが、survivin がカ スパーゼ-3、7と結合する能力は、XIAPより かなり弱い。Survivin は BIR 領域を通じて XIAP と結合し、XIAP を安定化させ、カスパ ーゼ-9の活性化を阻害する。Survivinのア ポトーシス抑制機構は、細胞内では直接カス パーゼ-3、7と結合するのではなく、他分子 との相互作用によってアポトーシスを抑制 していると考えられる。Survivinは、癌での 特異的な発現と予後に関わるため、がん治療 の標的分子として注目されている。

(4)ヒ素は前骨髄性白血病(APL)治療に有効な薬として知られている。APL以外の白血病および固形腫瘍においては、ヒ素はbcl-2の発現を低下させ、NF-κBの活性を抑制するこ

となどによって、これらの細胞のアポトーシスも誘導できる。近年、ヒ素と IFN- α の併用が、ATL の新しい治療法として注目されている。Hermine らは、再発 ATL と難治性 ATL にヒ素と IFN- α を併用する Phase II の臨床試験を行った。7 例中 1 例が完全寛解、3 例が部分寛解、そのうちの 1 例が 32 ヶ月の時点で、diseasefree を維持した。この臨床試験の結果は、ヒ素が ATL の新しい治療法として有望であることを示している。

2. 研究の目的

我々は、38 例の ATL と 18 人の健常人の末梢血細胞を用いて real-time PCR 解析を行い、ATL、特に急性型 ATL 症例で survivin mRNA レベルが 健常人より有意に高く、Performance status (PS) 3-4 の ATL は PS 1-2の ATL より survivin の発現が高いという結果を得た。ヒ素で ATL 細胞を処理すると、survivin の発現レベルが低下し、アポトーシスが誘導された。

Survivin は ATL で高発現している。 Survivin は XIAP などの他分子との結合する ことにより機能している。それらの結合を阻 害すれば、survivin の機能を抑制でき、 survivin の抗アポトーシス作用と分裂進行 作用を抑制することができると考えられ、が ん治療の標的分子として魅力的である。我々 は、ATL において、ヒ素による survivin 発現 の低下のメカニズムを調べるとともに、 survivin を標的した治療法の開発を試みた。

3. 研究の方法

(1) ヒ素による survivin 発現レベル低下の解析。

ATL においては NF- κ B が活性化している。 survivin が NF- κ B の標的遺伝子の一つで、 ヒ素が Tax を抑制し、 $I \kappa$ B のリン酸化を抑制 することにより NF- κ B の活性化を抑制する ことは知られている。 我々は ATL 細胞株 S1T と MT2 をヒ素で処理し、survivin の発現レベル変化と NF- κ B が活性化するかを調べた。 ①ヒ素で処理した MT2 と S1T 細胞の増殖を

- ①ヒ素で処理した MT2 と S1T 細胞の増殖を MTT Assay で調べる。
- ②ヒ素で処理した MT2 と S1T 細胞のアポトーシス変化を FACS で調べ、sub-G₁で評価する。 ③ヒ素で処理した MT2 と S1T 細胞の survivin RNA と蛋白質レベルの変化を RT-PCT とイムノブロット法で調べる。
- ④ヒ素で処理した MT2 と S1T 細胞を細胞質と核に分けて、 NF- κ B の p65 と p50、 $I \kappa$ B- α の変化をイムノブロット法で調べる。

- (2) Survivin はホモダイマーを形成して機能し、XIAP と結合することによって XIAP を安定化させ、caspase9 の活性化を抑制している。Survivin のダイマー形成あるいは XIAP との結合を阻害すれば、survivin の機能を抑制でき、survivin の抗アポトーシス作用と分裂進行作用を抑制することができると考えられる。ATL の新しい治療法を開発するために、我々は survivin のダイマー形成部位(89-103aa)と、XIAP と結合する部位(15-38aa)を標的としたオリゴペプチドを合成し、ATL 細胞株 SIT と MT2 をそれらのオリゴペプチドで処理し、細胞の増殖、分裂、アポトーシスに対するこれらのペプチドの影響を調べる。
- ①survivin のダイマー形成に関与するアミノ酸配列部位(89-103aa)、XIAP と結合するsurvivin の部位(15-38aa)のN末端に膜透過キャリアー(TAT 蛋白質の protein transduction domains, PTD)をつけて、FITCで標識したペプチドと FITC で標識していないペプチドを作製する。コントロールとしては GFP のアミノ酸配列を持つオリゴペプチドを用いる。
- ②FITC で標識した各ペプチドで ATL 細胞株 S1T と MT2 を処理し、各ペプチドが確実に細胞に入ることを共焦点顕微鏡で確かめる。
- ③FITCで標識していない各ペプチドのSITとMT2細胞に対する毒性をMTT assayで調べ、各ペプチドのSITとMT2細胞に対する増殖抑制効果を評価し、その効果を比較する。
- ④FITC で標識していないペプチドで処理した ATL 細胞を Annexin V と PI で染色し、FACSで解析し、各ペプチドのアポトーシス誘導効果を比較する。

4. 研究成果

(1) 我々は、Tax を発現する MT2 細胞と Tax を発現しない S1T 細胞の 2 つの ATL 細胞株を 2 μ M のヒ素で処理し、survivin の発現を低下させると、 2 つの細胞ともヒ素の濃度と処理時間に依存して増殖が抑えられた。 MT2 細胞では核内の p50 と p65 はヒ素の濃度と処理時間に依存して低下した。一方、細胞質の $I\kappa$ B- α は増加した。S1T 細胞でも核の p50 と p65 はヒ素に依存して低下した。 ATL 細胞では、 Tax の発現とは関係なく、ヒ素が $I\kappa$ B- α の分解を抑制することによって、 $NF-\kappa$ B の核への移行を阻害し、 $NF-\kappa$ B を介する survivin の転写を抑制し、ATL 細胞のアポトーシスを誘導したことが示唆された。

(2) FITC で標識した 89-103aa と 15-38aa ペ

プチドとコントロールの GFP ペプチドが ATL 細胞株 S1T と MT2 の細胞質に分布することを 共焦点顕微鏡で観察した。89-103aa と 15-38 aaペプチドの濃度と処理時間に依存してS1T と MT-2 細胞の増殖が抑制され、アポトーシ スが誘導された。15-38aaペプチドの細胞毒 性とアポトーシス抑制作用は89-103 aa より 強かった。以上の結果から、survivin のダイ マー形成部位と、XIAP と結合する部位を標的 としたオリゴペプチド、特に XIAP と結合す る部位を標的としたオリゴペプチドは、ATL 細胞のアポトーシスを強く誘導し、新しい ATL 治療薬として有望であることを示した。 15-38aa ペプチドの ATL 細胞のアポトーシス を誘導するメカニズムとしては、15-38aaペ プチドが survivin と XIAP の結合を阻害し、 XIAP が安定化できなくなり、caspase9 が活 性化するためと予想し、現在、そのメカニズ ムを詳細に調べているところである。

5. 主な発表論文等

(研究代表者、研究分担者及び連携研究者に は下線)

〔雑誌論文〕(計 8 件)

- ①Che X-F, Akiyama S, Tomoda A. Suppression of the proliferation of cancer cell lines, KB-3-1 and K562 cells preceded by a decrease in intracellular pH caused by phenoxazine derivatives. Oncol Rep. 19: 1253-1258, 2008. (査読有)
- ②Ikeda R, <u>Che X-F</u>. (他 14 名 4 番目) Thymidine phosphorylase inhibits the expression of proapoptic protein BNIP3. Biochem Biophys Res Commun. 370: 220-224, 2008. (査読有)
- ③Shirato K, <u>Che X-F</u>. (他 6 人 6 番目) Apoptosis induction preceded by mitochondrial depolarization in multiple myeloma cell line U266 by 2-aminophenoxazine-3-one. Biol Pharm Bull. 31: 62-67, 2008 (査読有)
- ④Zhao H-Y, <u>Che X-F</u>. (他 13 名 8 番目) Down regulation of c-Myc and induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU in KM12C cells. Cancer Lett., 270: 156-163, 2008. (查読有)
- ⑤Ikeda R, <u>Che X-F</u>. (他 17 名 10 番目) Hyperosmotic Stress Up-regulates the Expression of Major Vault Protein in SW620 Human Colon Cancer Cells. Exp. Cell Res. 314: 3017-3026, 2008. (査読有)
- ⑥Zhao H-Y, <u>Che X-F</u>. (他 13 名 8 番目) Molecular basis for the induction of an angiogenesis inhibitor, thrombospondin-1, by 5-FU. Cancer Res., 68: 7035-7041, 2008.

(査読有)

- ⑦Tachiwada T, <u>Che X-F</u>. (他 11 人 3 番目) Isolation and characterization of arsenite-resistant human epidermoid carcinoma KB cells. Oncol Rep, 18: 721-727, 2007. (查読有)
- ⑧Owatari S, <u>Che X-F</u>. (他 13 人中 6 番目). Copper-Transporting P-Type ATPase, ATP7A, Confers Multidrug Resistance and Its Expression Is Related to Resistance to SN-38 in Clinical Colon Cancer. Cancer Res., 67: 4860-4868, 2007. (査読有)

〔学会発表〕(計 9 件)

1. 車 暁芳

survivin ペプチド(89-104 アミノ酸)による ATL 細胞のアポトーシス誘導 第67回日本 癌学会学術総会 2008 年10月29日 名古屋国 際会議場

2. 王 嘉

低酸素によるヒト線維芽細胞での PGIS の高発現 第67回日本癌学会学術総会 2008 年10月29日名古屋国際会議場

3. 田畑 祥

チミジンホスホリラーゼ発現腫瘍細胞における NF- κ B を介した IL-8 の発現亢進機講 第67回日本癌学会学術総会 2008年10月29日名古屋国際会議

4. 趙 紅業

ヒト大腸癌における 5-FU による血管新生阻 害因子 TSP-1 の誘導 第67回日本癌学会学 術総会 2008年10月29日名古屋国際会議場 5. Xiao-Fang Che

The effect of hypoxia on gene expression in human fibroblast WI-38 cells. 第66回 日本癌学会学術総会 2007年10月3日パシフィコ横浜

6. Jia Wang

Increased expression of PGIS in two human fibroblast cell lines under hypoxic condition. 第66回 日本癌学会学術総会 2007年10月3日 パシフィコ横浜

7. Ryuji Ikeda

Thymidine phosphorylase suppresses the expression of proapoptic protein BNIP3. 第66回 日本癌学会学術総会 2007年10月5日パシフィコ横浜

8. Hong-Ye Zhao

Induction of angiogenesis inhibitor thrombospondin-1 by 5-FU in human colon cancer cells. 第66回 日本癌学会学術総会 2007 年10月3日パシフィコ横浜

9. Sho Tabata

Molecular basis for the induction of interleukin-8 by thmidine phosphorylase.

第66回 日本癌学会学術総会 2007年10月 3日 パシフィコ横浜

6. 研究組織

(1)研究代表者

車 暁芳 (CHE XIAO-FANG)

鹿児島大学・大学院医歯学総合研究科・助教

研究者番号:10437973