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Organogenesis accompanies the
establishment of the vascular system
which begins with sprouting angiogenesis.
Vascular endothelial growth factor (VEGF)
provides the primary stimulation in the
vascular sprouting process but the
negative regulation of this process remains
unclear. This study examined the role of
the transforming growth factor-8 (TGF-B)
superfamily in vascular sprouting using
three-dimensional dorsal aorta culture
system, in which the dissected tissue was
embedded in type I collagen gel. We
previously showed that VEGF did not
affect the morphology of dorsal aorta under
normoxia. When cultured under hypoxic
conditions, thereby enhancing the
expression of Flk-1, a receptor for VEGF,
the dorsal aorta formed many cord-like
structures in response to VEGF. To
examine the role of TGF-f in vascular
sprouting, each member of the TGF-p
superfamily was applied to this culture
system. TGF-B1, as well as TGF-f2 and
TGF-f3, inhibited capillary formation.
Though activin A, another member of
TGF-B superfamily, also abolished vascular
sprouting, bone morphogenetic protein 2

did not change the morphology. Both

neutralizing anti-TGF-81 antibody and
TGF-8 type I receptor (ALK5) inhibitor
partially reversed the additional effect of
TGF-81. TGF-p may be a regulator for

vascular sprouting during embryonic
period.
Embryonic aortic tissue culture In

three-dimensional collagen gel

The animal procedures were approved by
the Jichi Medical School Institute of
Animal Care and Use Committee. Dorsal
aortas were surgically carefully dissected
from embryonic day 14 (E14) C57/B16J mice
(CLEA Japan, Tokyo, Japan). Briefly, the
tissues were sectioned and extra connective
tissues were removed from the dorsal aorta.
Thereafter, they were cut into cylindrical
shapes using ophthalmic micro-scissors and
embedded in 60 ul type I collagen gel
(Beckton Dickinson, Franklin Lakes, NJ) in
96 wells culture dishes (Beckton Dickinson).
Each well received 90 ul media, including
the additives indicated in the text after the
collagen had gelled. The cultures were
maintained at 37°C in a hypoxic
environment (5% COz and 5% Oz. VEGF
(Sigma, St. Louis, MO), TGF-81, TGF-82,
TGF-B83, activin A, follistatin, bone
morphogenetic protein-2 (BMP2), or ALK5
inhibitor (Calbiochem, San Dieogo, CA) was
administrated to the media simultaneously
to avoid repeated room air exposure within
the first culture day after gelation, by
which sometimes caused failure of
sprouting new vessels development.
Cultures were examined under brightfield

microscopy using a Nikon phase-contrast



inverted microscope. Fluorescent
microscope images were captured using an
OLYMPUS BX50 microscope (OLYMPUS,
Tokyo, Japan) with a DP71 color digital
camera (OLYMPUS). Images were
imported into Adobe PhotoShop Elements
2.0 for final processing and layout.
Morphological and quantitative analysis of
vessels formation from aortic explants were
performed with some modifications
(Akimoto et al. 2002). The number of
capillary structures was quantified by
counting. Briefly, the capillary structures
were examined to determine if they bound
Alexa Fluor 488-conjugated Gs-1B4
(Molecular Probes, Eugene, OR) and
originated from the aortic explants. The
capillary sprouts were distinguished from
fibroblasts based on their morphology; wide
caliper and uniformly cohesive pattern. The
average of number of vessels in duplicate
conditions was recorded and all
experiments were repeated more than three
times. In some experiments, the length of
the vessels was measured using the Image
J 1.37 software.
As documented in previous articles,
VEGF induced new vessel sprouting and
elongation in 3D culture of cylindal shaped
mouse dorsal aorta (Fig. 1A and B). The
administration of TGF-B1 inhibited both
new vessel sprouting and elongation (Fig.
1C ). Treatment with either neutralizing
anti-TGF-81 antibody or ALKS5 inhibitor
partially reversed the inhibitory effect of
TGF-B1 (Fig. 1E, F and G). Lower dose of
neutralizing anti-TGF-B81 antibody (5, 10,
20 pg/ml) than 40 pg/ml did not change the

degree of new vessel sprouting (data not

shown).
Next, other isoforms of TGF-8 were
applied to this experimental system.

TGF-82 (Fig. 2C).and TGF-83 (Fig. 2D) also
abolished the sprouting angiogenesis but
the efficacy of TGF-B2 was less effective
than TGF-B1 or -83. It is possible that
TGF-Bs play coordinately and redundantly
with respect to the inhibition of sprouting
angiogenesis. Activin A, at a concentration
of 200 ng/ml,
inhibitory effect (Fig. 2E) and follistatin,

exerted only a partial

an endogenous inhibitor of activin A,
almost completely reversed the effect of
activin A (Fig. 2F). In contrast, BMP2
induced no apparent morphological change

(Fig. 2H).
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Fig. 1.

Effects of TGF-B1 on VEGF-mediated new
vessels formation. After 5 days, mouse
aorta tissues culture in collagen gels were
fixed and with  Griffonia
simplicifolia isolectin IB4 (Gs-IBs). Data

stained

are representative of four experiments. A:
control (5% fetal bovine serum), scale bar:
1mm, B: VEGF (25 ng/ml), C: VEGF +
TGF-81 (1 ng/ml), D: TGF-81 (1 ng/ml), E:
VEGF + TGF-81 +
anti-TGF-B81 antibody (40pg/ml), F: VEGF
+ TGF-81 + ALK5 inhibitor (1nM), G:

neutralizing

Quantification of new vessels formation.
Five identical experiments were performed
to confirm reproducibility. Number of new
vessels was counted in each condition (n=4
or 5). Columns and error bars mean
average and SE, respectively. The height of
columns means the percentage of new
vessels number compared to VEGF alone.
#: P < 0.01 versus control, *: P < 0.01
versus VEGF alone, ** P<0.05 versus
without anti-TGF-81 antibody, ***: P<0.01
VEGF+  TGF-B1+anti-TGF-81

versus

antibody.
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Fig. 2. Effects of other members of TGF-8
superfamily on new vessels formation.
Mouse 5 days dorsal aorta tissues in
collagen gels were fixed and stained with
Gs-IBs. Data are representative of three
experiments. A: VEGF (25 ng/ml), scale
bar: 1mm, B: VEGF + TGF-81 (1 ng/ml), C:
VEGF + TGF-82 (1 ng/ml), D: VEGF +
TGF-83 (1 ng/ml), E: VEGF + activin A (200
ng/ml), F: VEGF + activin A + follistatin
(400 ng/ml), G: VEGF + follistatin (400
ng/ml), H: VEGF + BMP2 (200 ng/ml). I:
Quantification of new vessels formation.
Four identical experiments were performed
to confirm reproducibility. Number of new

vessels was counted in each condition (n=3



or 4). Columns and error bars mean
average and SE. T81: TGF-61, T82: TGF-82,
TB3: TGF-B83, Act: activin A, Fol: follistatin.
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