科学研究費補助金研究成果報告書

平成21年 6月26日現在

研究種目:若手スタートアップ
研究期間:2007年度~2008年度
課題番号:19890281
研究課題名(和文) 高磁場 MRI, MRS を利用した、抗癌剤投与後の精巣障害予防技術の開発
研究課題名(英文) A new strategy in the prophylaxis against testicular dysfunction after cancer chemotherapy aided by high field MRI and MRS
研究代表者 山口 雅之
国立がんセンター・研究所及び東病院臨床開発センター・機能診断開発部・室長

研究者番号:90450577

研究成果の概要: 3 Tesla 高磁場 MRI 装置に適合する超高感度信号受信コイルを開発し、直径約 200 ミクロンのラット精細管の生体内イメージングに成功した。抗癌剤投与後、精巣は縮小、かつ精細管の陰影が不明瞭化し、MRI を使い精巣障害を診断可能であった。この装置と診断基準を用いれば、将来、ヒトでも抗癌剤投与後の障害精巣の診断に役立つ可能性がある。

交付額

(金額単位:円)

	直接経費	間接経費	合 計
2007 年度	1, 160, 000	0	1, 160, 000
2008 年度	1,080,000	324,000	1, 404, 000
年度			
年度			
年度			
総計	2, 240, 000	324,000	2, 564, 000

研究分野:医歯薬学 科研費の分科・細目:放射線科学 キーワード:癌、動物、MRI、MRS、精巣

1. 研究開始当初の背景

抗癌剤投与を含む治療法の進歩により、悪 性腫瘍患者の長期生存が可能となる中で、治 療関連合併症を防ぐことは、治療後の生活の 質(Quality of life)を維持する観点から 重要である。小児および若年男性の悪性腫瘍 長期生存例にみられる男性不妊症は、このよ うな治療関連晩期合併症の一つであり、約半 数が無精子症や乏精子症を発症する (Thomson, et al. Lancet 2002)。現在、こ の合併症を予防する手段は、造精障害を惹起 する薬剤の投与を避ける以外にない。その上、 抗癌剤治療中あるいはその前後で、精巣機能 を的確に評価する検査法がないため、生殖能 力温存の視点から治療戦略を最適化するこ とは事実上困難である。逆に、もし精巣組織 の状態を正確に診断する方法が開発されれ ば、その臨床的有用性は高い。そこで本研究 では、超高分解能 Magnetic Resonance Imaging (MRI)および超高感度 Magnetic Resonance Spectroscopy (MRS)を利用して、 抗癌剤治療に起因する精巣組織障害を非侵 襲的に診断する新手法の開発を目指した。

ところで、精巣の精上皮では、生殖細胞が 周期的に分化・増殖を繰り返しており、しか も分化の位相は不揃いで、場所によって異な る。従って、精巣内部で精上皮の状態を空間 的かつ経時的に*in vivo*で観測できる画像診 断法が合目的的である。本研究代表者は、動 物実験用 4.7 Tesla (T) MR装置を使用し、面 内分解能 66 μ mのMRマイクロスコピー(MRM) 法にて、正常ラット精細管(直径約 200-250 μ m)の観測に、また、¹H MRS法にて精巣内の 微小領域(約0.1mL)からクレアチン(Cre)、 コリン(Cho)、グリシン(Gly)、グルタミン酸 (Glu)といった低分子量代謝物の検出に成功 した(Yamaguchi M, et al. Magn Reson Med 2006,2009)。これらの成果は、精巣機能評 価法としてMRMやMRSが有用であることを示 唆しており、今後ヒト臨床へのトランスレー ションを目指し、疾患モデル動物を対象に実 験を繰り返し、測定の信頼性を高め、その実 用性を検討する必要がある。

MRM や MRS による精巣測定では、高磁場 MR 装置を用いた高感度計測が必須であるが、早 期にヒト臨床へのトランスレーションを目 指す観点から、臨床機としての開発機運がな い実験用 4.7 T装置より、既に臨床用として 普及しつつある 3 T MR 装置を使用した方が 望ましい。何故なら、MRI や MRS の測定条件 や測定結果は、静磁場強度に依存して大きく 異なるためである。また、3 T 装置では、 Specific Absorption Rate (SAR)の限界値が 設定され、測定の安全性が保障されている点 でも有利である。

2. 研究の目的

本研究では、臨床機を基に開発された3T 研究用 MR 装置を改良し、抗癌剤投与後にラ ット精巣の MRM・MRS 測定を行い、臨床応用 が可能な新しい精巣組織障害診断法の開発 を目的とし、以下の項目ごとに研究を施行し た;(1)3T全身用装置に装着可能な MRM コ イルの開発;(2)3T装置による精巣 MRM: 正常動物を対象とした検討;(3)3T装置に よる精巣 MRS:正常動物を対象とした検討; (4)3T装置による精巣 MRM:抗がん剤投与 ラットを用いた検討

3. 研究の方法

全ての動物実験は、国立がんセンター東病 院動物実験委員会にて承認されたプロトコ ールに則り実施された。MRI 撮影時、すべて の動物は、イソフルレン、笑気、酸素混合ガ ス吸入により全身麻酔下に置いた。実験終了 後、炭酸ガス吸入又は麻酔ガスの大量投与に より安楽死させた。

研究に使用した MRI 装置は、3T 全身用 MR 装置(Signa HDx, GE, Milwaukee, WI)であ る。これは、国立がんセンター東病院臨床開 発センターに、研究専用機として導入された ものである。

(1)3T 全身用装置に装着可能な MRM コイル の開発

 小径コイルの設計と製作 MRMにおいて、100 µm以下の面内分解能と 高い信号雑音比 (signal-to-noise ratio; SNR) を達成するためには、既存の MRI 信号 受信コイルでは性能が大きく不足するため、 独自に信号受信感度の高いコイルを開発し た。コイル製作に先立ち、電気回路の異なる 計三種類のコイル (ソレノイド型、バードケ ージ型、及び表面コイル)における、MR 信号 特性をシミュレーションした。次に最も高い 性能を有するコイル (35 mm 径、巻数 1 の受 信専用ソレノイドコイル) を実際に製作し、 3 T MRI 装置へ装着した。実際のコイル性能 は、塩化ニッケル含有のボトルファントム (直径 23 mm, 59 mm 長、塩化ニッケル濃度 14 mM) を測定し、検証した。

② 送信磁場不均一性の評価

一般に、3T以上の高磁場 MRI では、送信ラ ジオ波 (radiofrequency wave; RF) が生体 内で減衰する結果、被写体内の表面と深部と で RF 分布が不均一となりやすい。不均一な RF による核スピンの励起は、MRI 信号の定量 性を大きく損なわせる。そこで、3 T 全身用 装置に前項①で製作したソレノイドコイル を組み合わせた MRM システムにて、RF 送信磁 場の不均一性を double angle method (DAM, Insko, et al. J Magn Reson 1993) にて評 価した。測定対象は、前出の塩化ニッケルフ アントムであり、RF 送信には、装置備え付け の全身用コイル (body coil) を、MRI 信号受 信には前出のソレノイドコイルを用いた。三 次元グラジエントエコー (gradient echo, GRE) 繰り返し時間 (repetition time, TR) 500 ms、エコー時間 (echo time, TE) 4 ms、 フリップ角入力値 (flip angle, FA) 20, 40 度にて MRI 画像を取得した。異なる FA(入力 値) にて計測された二組の異なる画像セット から、各画素位置 x における MRI 信号を読み 出し、実際の FA を下記の計算式より pixel-by-pixel に算出した。

 α (x) = arcos(SI α 2(x) / SI α 1(x)) 但し、SIa#(x) は画素位置 x における MRI 信号強度 (signal intensity; SI) とし、a# (#=1 or 2) はFA 入力値で、 α 1=2 x α 2 で ある。送信出力が正しく、かつ送信磁場が均 ーなとき、FA 入力値と実際のFA 値は等しく、 かつ画素位置に依存した数値変動はない。従 って、FA 入力値と実際のFA 値とのずれ、お よびその画素位置に応じた分布を表示する ことにより、送信磁場の均一性が評価可能と なる。

(2) 3 T 装置による精巣 MRM:正常動物を対象とした検討

Wistar 種雄性ラット (n=7)を実験に供した。 3T MRI 装置に前出のソレノイド型コイル(3.5 cm 径、巻数 1)を使用した。MRI 測定パルス シークエンスは以下の通りである; Spin echo (SE) 法、TR 4000 ms、TE 30-120 ms、及び inversion recovery (IR) 法、TR 4000-7000 ms、TE 21 ms、反転時間 (inversion time, TI) 200-2500 ms、面内分解能 78 μm、スライス 厚 2 mm。

得られた MRI 画像上にて、精巣中心部と背 景 ノ イ ズ (空 気) 領 域 に 関 心 領 域 (region-of-interest, ROI) を置き、精巣 の MRI 信号値を背景ノイズの標準偏差にて除 し、SNR を算出した。*In vivo* MRI にて、精 細管の描出能を定性的に評価し、どのパルス シークエンスとスキャンパラメーターが、精 細管壁と内腔の描出に適しているか検討し た。

(3) 3 T 装置による精巣 MRS:正常動物を対象とした検討

Wistar 種雄性ラットを実験に供した。測 定に用いた MRI 装置とコイルは前項と同様で ある。Single voxel PRESS (point resolved spectroscopy)法にて、精巣中心部に置いた 関心領域 (125 μ L) 内の *in vivo* MRS 計測 を行った。一方、*in vitro* 計測では、精巣 組織を摘出し、直ちに液体窒素を使い凍結し た後、過塩素酸抽出を行い、得られたサンプ ルを共鳴周波数 500 MHz (11.7 T) 分析用磁 気共鳴装置 (nuclear magnetic resonance, NMR) にて解析し、1D スペクトルを得た。

(4) 3 T 装置による精巣 MRM: 抗がん剤投与 ラットを用いた検討

Wistar 種雄性ラット (n=12)を三群に分け、 アドリアマイシン (adriamycin, ADR) 8 mg / kg body weight (BW) 投与群 (n=4)、ADR 6mg / kg BW 投与群 (n=4)、コントロール群 (生 理食塩水投与、n=4) とした。薬剤投与前、 投与後4週、8週に MRI 撮像を行った。MRI 装置は前出と同様であるが、信号受信コイル は、前出のソレノイドコイルをさらに改良し、 直径 35 mm、巻数3 とした。コイルの巻数を 増すことにより、精巣の頭尾方向における信 号検出感度を均一化することを意図した。 MRI 測定パルスシークエンスは SE 法(TR/TE = 4000/90 ms、面内分解能 78 μ m、スライス厚 1 mm、撮像時間 1 7分)である。

実験終了後、精巣を摘出し、酢酸ホルマリン固定液にて24時間浸透固定した。標本は、 パラフィン包埋後、薄切し、ヘマトキシリン・エオジン染色を施した。

得られたMRI画像上、上述の方法にて精巣 中心部のSNRを算出した。また、MRI上で、精 細管の所見を定性的に評価した。さらにMRI より精巣重量を以下の方法にて推定した;精 巣の最大横断面にて、その長径d₁、短径d₂を 計測し、精巣が描出されたスライス枚数に MRIスライス厚(1 mm)を乗じた値を精巣の長 軸長d₃とした。精巣を楕円体とみなし、 $4/3\pi$ $(d_1/2 x d_2/2 x d_3/2)³にて体積を計算し、比$ 重は1 g/mLと仮定した。

顕微鏡を用い、100倍視野にて精巣の病 理標本を観察し、精巣中心部から隣接した精 細管断面10ヶの短径を計測した。その平均 値を精細管径として記録した。

4. 研究成果

(1) 3 T 全身用装置に装着可能な MRM コイル の開発(1)-①小径コイルの設計と製作

シミュレーションの結果、直径 35mmの小 口径コイルは、直径 20 mm の円筒形被写体を コイル中心部に挿入するソレノイド型と、被 写体の表面にコイルを置く表面コイル型と では、前者のB1は、被写体中心を通るMRI スライスにおいて 20.1 (arbitrary unit, AU)、 変動係数(CV)10.3%に対し、後者はB1値12.8 (AU), CV 32.2 %であり、ソレノイド型が、信 号受信感度及び均一度に優れていた。バード ケージ型と比較した場合も、ソレノイドコイ ルが信号感度の点約3倍優れ、信号均一度は 同等であった。以上より、ソレノイド型コイ ル(35mm直径、巻数 1)を製作した(図1左)。 全身用 MRI 装置の磁石ボア径は約 60 cm と広 く、小動物を計測する際、その頭尾体軸を、 静磁場と垂直方向に配置できる(図1右)の で、ソレノイド型 MR 信号受信コイルが使用 可能である。コイル製作後に行われたファン トム実験にて、上述のシミュレーション結果 と同等の信号特性が確認された。

(1)-② 送信磁場不均一性の評価

送信磁場分布の均一性は、コイル開口部に 平行な(被写体の軸位断)方向では、CV5%、 これと垂直な(被写体の矢状断方向)では、 10%であり、ほぼ均一な送信磁場分布が得ら れた。これは、被写体直径よりはるかに大き い径を有する全身用コイルを用いると、小被 写体内部が均一に励起されるため、及び、小 動物の体のサイズが、3T(共鳴周波数127 MHz)の RF 波長より充分小さいため、生体内 での RF 減衰が目立たないためと考えられた。 ここでは、全身用高磁場 MRI 装置を利用し た小動物 MRI 及び MRS 測定のための、ハード ウェア面の基盤を確立した。トランスレーシ ョナル・リサーチの観点から、3T MRI 装置 を利用した動物モデルイメージングは、世界 的にも注目されている。本計測システムは、 動物精巣計測以外にも応用が可能であり、例 えばマウス実験腫瘍の MRI 取得、ラット頚動 脈の狭窄評価、実験腫瘍の神経浸潤描出、等 にも利用され、他研究分野への波及効果の大 きい成果が得られた(主な発表論文リスト 2-5、学会発表 2-6)。

(2) 3 T 全身用 MRI による精巣マイクロイメ ージング:正常動物を対象とした検討

SE法T₂強調画像(TE=90 ms)上、精細管は 内腔が高信号、壁が低信号の微細管状構造と して描出された(図2左上)。精巣のSNRは、 TEが 30, 60, 90, 120 msと延長するに連れ低 下し、それぞれ 142±27, 91±25, 61±21, 46±18 (AU、平均±1SD)であった。これは、 動物専用 4.7 T MRI装置とクアドラチャー表 面コイルの組み合わせで撮像した場合と比 較して、3倍以上のSNRである(Yamaguchi et al. Magn Reson Med 2009, 論文リスト1)。 また、T₂強調が強いほど、精細管内腔と壁の コントラストは良好であったが、精巣全体の SNR低下とバランスがとれたTE 90 msが、精 細管描出に適していると考えられた。

以上より、3 T の静磁場強度であっても信 号受信コイルの改良によって SNR を高め、ラ ット精細管(直径約 200 μ m)の生体内観測 が可能であることが、世界で初めて示された。 このような「マイクロイメージング」技術は、 国内で特に注目を集めている(学会発表 7)。 さらに、ヒト精細管径は、ラット同様、約 200 μ m である(Johnson L, et al J Androl 1986)ことから、将来、ヒト精巣測定用コイ ルを開発すれば、ヒト精細管の生体内観測が、 MRIを使って、可能となり、従来にはない非 侵襲的な精巣機能評価が創出されると期待 される。

一方、IR画像上、精巣の信号雑音比は、TI 200,500,700,900,1200 msにてそれぞれ 203±13,52±2.7,20±1.6,11±3.1, 43±11 (AU、平均±1 SD)であった。精細管 所見は、TI 200-500 msでは、精細管腔が高 信号、壁が低信号と、SE T₂強調画像と同様で あった(図2右上)。精細管壁の信号はTI 700 ms付近で低信号から高信号へ転じ(図2左 下)、一方、精細管内腔はTI 1200 ms付近で nullとなり、MRI上黒く表示された(図2右 下)。これは、T₁コントラスト付与にて精細管 が描出されることを意味する。もし、T₁コン トラストを高める反転パルスと組み合わせ た高速spoiled GRE法を適用すれば、理論上 1本の精細管を連続して 3D撮影できる(学会 発表1)。これは、今後さらに高精度の*in vivo* 検査法開発に発展する可能性を秘めた成果 と言える。(これに関しては、現在パルスシ ークエンスを調整に着手している。)

図2 正常ワット精巣の MRM。SE 画像 (左上)、TI 500 ms (右上)、700 ms (左 下)、1200 ms (右下)の IR 画像。右上と右 下では、精細管のコントラストが逆転する。

(3) 3 T 全身用 MR 装置による精巣 MRS:正常 動物を対象とした検討

In vivo MRSでは、正常ラット精巣中心部 の微小領域(125 μL)において、磁場均一 度は水のピークの半値幅で 20-30 Hz (0.16-0.24ppm)であった。磁場均一度は予想 より低く、その結果、代謝物ピークの線幅が 拡大し、脂質、クレアチンN(CH₃), C2-H、コリ ン N(CH₃)₃のピークのみ検出可能であった (図3左)。一方、溶液NMR計測(11.7 T)で は、正常ラット精巣から乳酸、アラニン、グ ルタミン酸、クレアチン、グリセロホスホコ リン、コリン、グリシンといった多数の低分 子量代謝物が検出された (図3右)。過去の 報告によると、4.7 T動物専用装置では、in vivo MRSにて、水ピークの半値幅で約 10 Hz (0.05 ppm)の高い磁場均一性が得られ、精巣 において、クレアチン、コリンの他、乳酸、 グルタミン酸、グリシンのピークが検出可能 であった。従って、3 T装置 in vivo MRS計測 にて僅かな代謝物ピークのみしか検出でき なかった理由として、11.7 T や 4.7 Tより は相対的に低い静磁場強度のため、ピーク分 離が不良な上、計測領域内の磁場均一性が低 いことも原因と考えられた。これを解決する

ために、装置に備え付けの高次グラジエン ト・シム・コイルを高精度に調整し、磁場均 一性を高める自動調整機構を導入したが、既 存のグラジエント・シム・コイルの性能に限 界があり、小動物用の小さな関心領域内の磁 場均一性を高めるために必要な補正電流を 得ることは困難であった。高電流量のグラジ エント・シム・コイルの設置には、装置の大 幅な改造及び調整が必要であり、断念した。 従って、3 T全身用装置を利用した高精度の *in vivo* 精巣MRS計測は、現時点では困難と 言わざるをえない。

(4) 3 T 全身用 MRI による精巣マイクロイ メージング:抗がん剤投与ラットを用いた検 討

予備実験の結果から、ADR 投与後2-4週では、 精細管の縮小が不十分と判定し、投与後8週 まで実験を行うこととした。また、ADR 合計 8 mg 投与群は、実験中半数のラットが薬剤毒 性の影響を否定できない原因で死亡したた め、解析には ADR 6 mg 投与群のデータを用 いた。

T。強調画像上、精巣の信号雑音比は、ADR群 では、ADR投与後4週、8週にて、29.0±1.1、 24.2±3.8 (AU、平均± 1SD) であり、対照 群(30.2±3.1、29.1±1.1)より低い傾向に あったが、両者に統計学的有意差は認められ なかった。精細管は、ADR投与後4週では、 対照群と比較して、やや細く見えた。8週で は対照群で精細管が明瞭に描出されるのに 対し、ADR投与群で精細管は不明瞭であった (図4)。MRI所見より推定した精巣重量は、 ADR投与群にて、投与後週数に比例して低下 し、週4では0.69±0.09g、週8では0.33 ±0.10 g となり、対照群の1.12 ±0.26 g より有意に少なかった (p<0.01, t-test)。標 本上の精巣重量は、ADR投与群(8週)では 0.43±0.06 g、対照群 1.34±0.28 g であっ た。精細管直径は、ADR投与群では141±12 μm、

対照群では 230 ±25 μ mと、前者で有意に縮 小していた (p<0.01, t-test)。

以上の結果から、抗癌剤投与後に造精障害

に陥った精巣では、①精巣サイズの縮小、② 精細管の不明瞭化が、*in vivo* MRM上の診断 基準となり得る。T₂強調画像におけるSNRは診 断に対する有用性は低い。抗癌剤投与後の精 巣組織変化を、インビボイメージングし、こ のような診断基準を提案した研究例は、検索 した限り、過去国内外に存在しない。今回の 検討では、診断基準②において、観察者の視 覚に依存する要素が大きいので、今後、人工 知能による画像パターン認識を利用したク ラスター解析等を導入し、客観性を高めた診 断アルゴリズムの開発に着手したい。

図 4 抗癌剤 (adriamycin, ADR) 投与後 8 週の精巣 (左) と対照 (右)。ADR に より精巣は萎縮し、精細管は不明瞭化し た。

ところで、抗癌剤投与後の MRM 上、精細管 が不明瞭化した原因は、萎縮した精細管径 (平均 141 μ m)が、MRM の面内画素(78 μ m) の約2個分であり、壁-内腔-壁よりなる管状 構造が表示できないためと、厚み1mmの MRM スライスによる部分容積効果のためと考え られる。生体特有の微細な動きによるアーチ ファクトも影響している可能性がある。一方、 ex vivo MRM (面内画素 59 μ m、厚み 0.5 mm、 図5)では、萎縮精細管が明瞭に描出された。 しかし、画素サイズの縮小による SNR 低下を 補填するため加算回数を増さねば成らず、結 果、約2時間の撮像時間がかかるので、in vivo 計測には非現実的と考えられた。

5. 主な発表論文等

(研究代表者には下線)

〔雑誌論文〕(計8件)

- Yamaguchi M, Mitsumori F, Watanabe H, et al. 他2名 Visualization of Seminiferous Tubules in Rat Testes in Normal and Diseased Conditions by High-resolution Magnetic Resonance Imaging. Magnetic Resonance in Medicine 2009 in press, 査読有
- 2. Sugiyama K, <u>Yamaguchi M</u>, Kuroda J, et al.他4名 Improvement of Radiation-induced Healing Delay by Etanercept-treatment in Rat Arteries. Cancer Science, 2009 May 4, [Epub ahead of print]. 査読有
- Yamaguchi M, Fujii H, Inoue K, et al. 他7名 Precise co-registration SPECT and MRI for small animal imaging using a common animal bed with external references: A feasibility study. Proceedings International Society for Magnetic Resonance in Medicine (Intl Soc Mag Reson Med) 2009;17:3091 査読 有
- Mieno H, <u>Yamaguchi M, Mitsunaga S, et al.</u> 他8名 In vivo visualization of mouse sciatic nerves involved with pancreatic cancer cells using manganese enhanced MR imaging technique. Proceedings of Intl Soc Mag Reson Med

2009;17:2326 査読有 5. Mori K, <u>Yamaguchi M,</u> Fujii H, et al. 他 3 名 Prolonged signal decay in the

ablated area after radiofrequency ablation in the ferucarbotran-administered liver: A basic experimental study for the visualization of ablative margins in a rabbit model. Proceedings of Intl Soc Mag Reson Med 2009;17:4047 査読有

- Kunimatsu A, <u>Yamaguchi M,</u> Okamoto Y, et al. 他5名 Validation of diffusion tensor imaging and tractography of the human peripheral nerve using small-diameter ex vivo phantoms. Proceedings of Intl Soc Mag Reson Med 2008;16:3304 査読有
- 藤井博史、梅田泉、山口雅之 バイオマー カー研究の現状と展開 機能診断 がん 分子標的治療 5(4):268-274 2007 査 読無
- Yamaguchi M, Mitsumori F, Watanabe H, et al. 他2名 ¹H MRS assessment of spermatogenic activity in experimentally injured rat testes.

Proceedings of Intl Soc Mag Reson Med 2007;15:2738 査読有

〔学会発表〕(計7件)

- 山口雅之、奈部谷章、野崎敦、他 3テ スラ全身用装置によるラット精細管の高 精細MRI観測 第36回日本磁気共鳴医 学会 2008年9月11日 旭川市
- 中神龍太朗、山口雅之、平山章、他 人 用3TMRI上での動物マイクロイメージ ングデバイス:信号不均一性の検討 第 36回日本磁気共鳴医学会 2008年 9月12日 旭川市
- 山口雅之、井上一雅、梅田泉、他 小動物用SPECTに融合させるべきは MRIかCTか? 第36回日本磁気共鳴医 学会 2008年9月11日 旭川市
- 山口雅之、梅田泉、藤井博史 腫瘍モ デルマウスの拡散強調MRイメージング: マルチショットエコープラナーイメージ ングの有用性 第67回日本癌学会学術 総会 2008年10月29日 名古屋市
- 光永修一、山口雅之、落合敦志、他 ヒト膵がん神経浸潤モデルを用い た、膵がん神経浸潤の*in vivo* MR イメー ジング 第67回日本癌学会学術総会 2008年10月29日 名古屋市
- 6. <u>山口雅之</u>、奈部谷章、野崎敦、他 高磁 場 whole body MRI臨床装置を用いた微小 検体マイクロイメージング 第67回日 本医学放射線学会総会 2008年4月 5日横浜市
- 〔図書〕(計 0件)
 〔産業財産権〕
 ○出願状況(計 0件)
 ○取得状況(計 0件)
 〔その他〕該当なし

6. 研究組織

(1)研究代表者 山口 雅之 国立がんセンター・研究所及び 東病院臨床開発センター・機能診断開発部・ 室長 研究者番号:90450577

(2)研究分担者:該当なし

(3)連携研究者:該当なし