科学研究費助成事業 研究成果報告書

 令和 5年 6月16日現在

 機関番号: 33919

 研究種目:基盤研究(B)(一般)

 研究期間: 2019~2022

 課題番号: 19H02176

 研究課題名(和文)蛍光パイオイメージング用小型光源をめざした超短パルス半導体レーザの要素技術開発

 研究課題名(英文)Study on ultrashort pulsed semiconductor laser diodes for fluorescent bio-imaging

 研究代表者

 宮嶋 孝夫(Miyajima, Takao)

 名城大学・理工学部・教授

 研究者番号: 50734836

交付決定額(研究期間全体):(直接経費) 13,300,000 円

研究成果の概要(和文):臨床現場で利用可能な蛍光バイオイメージング用超短パルス半導体レーザの実現に向けて、構造設計、作製及び発生する光パルスの特性評価を行った。分子線エピタキシー法でGaAs系半導体レーザを作製し、電流注入によるレーザ発振(波長:828 nm)を確認する一方で、有機金属気相成長法による成長を外部研究機関に依頼し、再現性のある3インチ径ウェハーを使ってプロセス検討を行うことを可能にした。オーミック電極の改良や無反射コートの成膜は可能になったが、安定したリッジ形成に問題が発生し、電流注入による光パルスの発生には課題を残した。一方で、ビーム品質を低減させることなくピークパワーを増強する手法を提案した。

研究成果の学術的意義や社会的意義 本研究で実用化を目指している蛍光バイオイメージング用超短パルスレーザは、その基本材料としてGaAs系半導 体を利用している。これを利用した半導体レーザはコンパクトディスクプレーヤーの光源として、1980年代には 実用化されている。したがって、その成長や作製プロセスは既に確立されており、2000年以降に実用化された GaN系半導体レーザに比べれば平易である。しかしながら、実用化されたGaAs系半導体レーザの研究や製造は急 速に減少している。本研究では、これらの技術を継承して有効利用しつつ、日本が直面している少子高齢化にお ける健康寿命を延ばすことに貢献できると考える。

研究成果の概要(英文): Toward the realization of ultrashort-pulsed semiconductor laser diodes for fluorescence bio-imaging that can be used in clinical sites, we performed structural design, fabrication, and characterization of the generated optical pulses. GaAs-based semiconductor laser diodes were fabricated by molecular beam epitaxy, and the laser oscillation with a wavelength of 828 nm was confirmed by current injection. Moreover, it made it possible to examine the process using 3-inch diameter wafers grown by metal-organic chemical vapor deposition. Although it became possible to improve the ohmic electrodes and form a anti-reflective coating, there were problems with stable ridge formation, and problems remained with the generation of light pulses by current injection. On the other hand, we proposed a method to increase the peak power without reducing the beam quality.

研究分野:半導体レーザ

キーワード: 超短パルス GaAs系半導体 無反射コート バイセクション構造

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

1981 年以来、日本人の死因の第一位を占めているがんに対して、有効な治療法の確立と、その根絶につながる本態解明が求められている。そのための強力な手法の1つが、"2光子顕微鏡を使った蛍光バイオイメージング"である。この手法では、蛍光タンパク質[1]を使ってがん細胞自体を特異的に標識した後、その2光子蛍光を検出することで、生体深部におけるがん細胞を「生きたまま」高い空間分解能で可視化し、浸潤・転移におけるがん細胞の動態を観察可能である[2]。このような特徴から、がん切除手術前に行う検査手法としても期待されている。ところが、その光源には、高価なチタン・サファイアレーザ等が使われ、その有用性が分かりながらも臨床現場での普及は難しく、利用可能な研究機関も限られている。そこで、メンテフリーで安価な小型半導体パルス光源の開発が期待され、超短パルス半導体レーザを用いた蛍光バイオイメージング[3]が報告されているが、実用化のためには更なる高ピークパワー化が必要である。

一方、近年、2 光子吸収を使った3次元多層光記録の光源として、モード同期レーザと半導体増幅器を組合せた GaN 系超短パルス半導体レーザが開発され、そのピークパワーは300W に達し[4]、これを光源とした2光子吸収による光記録が報告された[5]。更に、分散補償とチャープパルス増幅を使って9kWもの高ピークパワーが実現している[6]。しかしながら、ここで実現している発振波長は405 nm 程度であるため、その光は生体深部には到達できず、バイオイメージング用光源としては不向きである。

そこで、本研究では、750-870 nm の波長領域での発振が可能な GaAs 系超短パルスレーザ を作製し、GaN 系超短パルス半導体レーザで実証された高ピークパワー化の技術を利用するこ とで、バイオイメージング用光源の要素技術開発を行った。

2.研究の目的

GaN 系超短パルス半導体レーザにおいて開発した光パルス発生技術と、GaAs 系半導体レー ザの作製技術を融合させ、発振波長 800nm 程度の GaAs 系超短パルス半導体レーザの要素技 術を開発する。これにより、臨床現場でも利用可能な、世界初蛍光バイオイメージング装置の 実現を目指す。

3.研究の方法

本研究では、GaN 系超パルス半導体レーザの高 ピークパワー化を実現したモード同期レーザと半 導体増幅器を GaAs 系半導体で作製し、両者を組 み合わせることで超短パルスを発生させることを 目指した。そのために、まずは、単純なリッジ形 状の屈折率導波型 GaAs 系半導体レーザの試作と 性能確認を行った上で、モード同期レーザの基本 構造となるバイセクション構造を導入した GaAs 系半導体レーザと GaAs 系半導体増幅器の設計と 作製を試みた。

図 1:GaAs 基板上に成長したレーザ構造

GaAs 系半導体レーザの基本的な縦構造とリッジストライプ形状は、以下の2つのシミュレータを使って設計を行った。1つは STR 社が開発した1次元シミュレータ SiLENSe[7,8]であり、 もう1つは Math Work 社が開発した科学技術計算用汎用ソフト MATLAB 上で動作する有限差 分法を利用した2次元光導波路解析ソフト Waveguide Mode Solver [9]を使用した。

図1に、ここで用いたGaAs系半導体レーザの基本的な縦構造を示した。基板としては、(100) 方位のn型GaAs:Siを用いた。基板の電子濃度はn=1×10¹⁸ cm⁻³、厚さは350 µm であった。成長 法としては、はじめに分子線エピタキシー法を使い、その後に有機金属気相成長法を使用した。 分子線エピタキシー法による成長は、(株)日本真空技術製 MBC-300 において、Al、Ga、As、 Si、Beの金属原料の分子線をKnudsen-Cell(K-Cell)により発生させ成長を行った。このとき 用いたn型GaAs:Si基板の大きさは、成長装置の基板ホルダーに合わせて、15 mm×15 mmと した。そのために、1 回の成長で作製した試料を使って、プロセス検討や、異なった条件のデ バイスを作製しそのデバイス特性を比較することが難しい。そこで、上述のように分子線エピ タキシー法で成長を行いつつ、外部研究機関で、有機金属気相成長法を用いた成長をお願いす ることとした。その結果、3 インチ径の n 型 GaAs:Si 基板上に、図 1 に示した構造を 1 度に複 数枚成長することが可能になった。

成長した試料をデバイス化するプロセス工程では、ドライエッチングを使わずに、化学エッ チングを使用し、リッジストライプ形状の屈折率導波路型レーザの作製を行った。絶縁体膜と してスパッタ法で成膜した SiO₂、n型オーミック電極として AuGe/Ni/Au[10-12]、p型オーミッ ク電極として Ti/Pt/Au[13]を用いた。オーミック電極における、それぞれの膜厚及びアニール条 件の最適化は、円形 TLM (Transmission Line Method)法[11, 12]によるコンタクト比抵抗を求め ることで行った。

モード同期レーザと半導体増幅器の実現とその高性能化のためには、誘電体多層膜を使った レーザ端面の反射率制御と無反射コートを形成する技術が必要である。そのために、誘電体層 として SiO₂、Nb₂O₅、ZrO₂、Ta₂O₅薄膜を芝浦メカトロニクス社の多元スパッタ装置 i-Miller を 用いて、Si 基板上にそれぞれ成長し、その膜厚、屈折率及び消衰係数を Sopra 社製回転検光子 型の分光エリプソメトリーES-4G で解析・評価した。その後、GaAs 基板上に誘電体多層膜であ る Nb₂O₅/SiO₂やTa₂O₅/SiO₂等を製膜し、その反射率を日立製分光光度計 UH4150 で測定し、 最適化を行った。

4.研究成果

(1)シミュレータを使った GaAs 系半導体レーザの特性計算

図 1 に示した縦構造を有するレーザの特性を、1 次元シミュレータ SiLENSe を用いて計算したところ、図 2 のような結果が得られた。ここでは、キャリア濃度を、*p*+-GaAs 層において *p*=3×10¹⁹ cm⁻³、*p*-Al_{0.5}Ga_{0.5}As において *p*=3×10¹⁸ cm⁻³、*n*-Al_{0.5}Ga_{0.5}As において *n*=3×10¹⁸ cm⁻³ とし、 共振器長を 600 µm とした。

図 2(a):屈折率分布と TE モードの光強度分布 図 2(b):電流-電圧(IV)及び電流-光出力(IL)特性

図 2(a)に示したように TE モードの光分布は活性層を中心に分布し、垂直横モードが単一で あることが確認された。ここで得られた光閉じ込め係数は 5.0 %であった。また、図 2(b)に示し たような電流-電圧(IV)及び電流-光出力(IL)特性が得られ、しきい値電流は 7.9 mA、微分抵抗は 7.8 Ω であった。また、この時の発振波長は 816.2 nm と計算された。

(2) GaAs 系半導体レーザの作製と特性評価 [16, 17]

図 3 に、分子線エピタキシー法で成長した GaAs 系半導体レーザを室温パルス駆動させたと きの特性を示した。印加した電気パルスは、パルス幅 5.0 µs で Duty 比 0.5%、繰返し周波数 1 kHz。 共振器長は 600 µm であった。

図 3(a)に示した IL 特性より、しきい値電流 *I*th=445 mA、しきい値電流密度 *J*th=37.1 kA/cm² が 得られた。また、図 3(b)の光スペクトルより、波長 828 nm 程度でレーザ発振が起きていること が分かる。プロセス後のデバイスを光学顕微鏡で観察すると p 型オーミック電極が剥離してい ることから、しきい値電流密度が高い原因は結晶成長よりも p 型オーミック電極の形成にある と考え、プロセス工程の見直しと改善を行った。

n型オーミック電極に関しては、n型 GaAs:Si (電子濃度 $n=1\times10^{18}$ cm⁻³)に対して、エッチン グにより表面酸化膜を除去後、AuGe(重量比 Au:88%,Ge:12%、厚さ 160 nm)/Ni(厚さ 50 nm) /Au (厚さ 200 nm)を電子ビーム蒸着後、窒素ガス雰囲気中で 420°C 1 分間のアニールを行う ことで、コンタクト比抵抗 $\rho_c=2.24\times10^{-4} \Omega \text{cm}^2$ 、シート抵抗 $r_s=38.5 \Omega/\text{sq}$ が得られた。また、p型 オーミック電極に関しては、有機金属気相成長法により成長した GaAs 基板上の Undoped-GaAs (厚さ 50 nm)/p型 GaAs:C(正孔濃度 $p=2\times10^{18}$ cm⁻³)に対して、エッチングにより表面酸化 腹を除去後、Ti(厚さ 10 nm)/Au(厚さ 200 nm)を電子ビーム蒸着後、窒素ガス雰囲気中で 420°C 1 分間のアニールを行うことで、コンタクト比抵抗 $\rho_c=2.83\times10^{-5} \Omega \text{cm}^2$ 、シート抵抗 $r_s=329$ Ω/sq が得られた。また、リッジ部分の SiO2 絶縁膜を除去する工程を見直し、エッチング液を HF(50%):H2O=1:10 から、NH4F と HF との混合液であるバッファードフッ酸(BHF、濃度 1%)に変更して、エッチング速度を落としつつ、エッチング時間を5分間とした。これにより、 SiO2 絶縁膜のエッチング除去工程が制御され、その後に蒸着される p型オーミック電極である Ti/Au の剥離も抑制することができるようになり、上述の問題は解決された。

これらの改善されたプロセス条件を用いて、有機金属 気相成長法で図1のレーザ構造を成長した試料を使って デバイス作製を行ったところ、図3のような逆メサ形状 のリッジが形成された。この形状は、リッジを形成する 結晶方位を90°回しても変化はなかった。以前、GaAs単 層や分子線エピタキシー法で成長したレーザ構造の試料 では、理想的なメサ形状のリッジが形成されていた。図 4 に示した断面形状のまま、上部に p型オーミック電極 を形成するとリッジの側壁で電極が断線してしまう可能性 が高い。この問題解決は、安定した性能のデバイスを作製 するためには必要であり、現在、改善を行っている。

 (3)超短パルス発生用バイセクション構造の試作[17] モード同期による光パルスの発生には、通常のp型オー ミック電極の一部を電気的に分離した領域を形成したバイ セクション構造を導入し、可飽和吸収を起こさせる必要が ある[18]。そこで、図5のような、バイセクション構造を有 するGaAs系半導体レーザを作製して、2つのp型電極であ る利得領域と可飽和領域の間の電気抵抗を測定したところ、 R 20 kΩと十分に電気的分離していることが確認できた。 この構造を使って、光パルスの発生を目指す。

(4)誘電体多層膜を使った端面反射率制御と無反射コート

GaAs 基板上に誘電体 2 層膜である Nb₂O₅ (厚さ 37.1 nm)/SiO₂(厚さ 48.7 nm)を成膜 し、反射率を測定したところ、810 nm の波長 において 4.3×10⁻²の反射率が得られ、モード 同期レーザの無反射コート膜として利用で きることが確認できた。また、より安定した 特性が期待される Ta₂O₅(厚さ 51.4 nm)/SiO₂ (厚さ 46.8 nm)からは、825 nm の波長にお いて 2.7×10⁻³の反射率が得られた。また、リ ッジ型傾斜導波路を導入し、端面を 2-3°傾斜 させることで、図 6 に示されるように、反射 率は 10⁻⁸程度まで低減可能であることをシミ レーションにより示すことができた。ただし、

図 4: リッジの断面 SEM 像

図5:バイセクション構造

図 6: 傾斜導波路における端面反射率

現在の装置では、安定した屈折率の誘電体を成膜することが難しく、分光エリプソメトリーに よる評価を適切に行うことが重要であることが分かった。 また、ここで開発した分光エリプソメトリーによる解析を、GaN 系面発光レーザに使われる AlGaInN の物性評価に適用し、そのデバイス特性向上へ寄与が期待されている[19]。

(5)利得スイッチング動作による短パルス発生とピークパワーの増強 [20] より高精細なバイオイメージングを行うためには、より高ピークパワーの超短パルス半導体レ ーザが期待される。しかしながら、一般に、その高ピークパワー化のために、注入電流密度を 上げる必要があるが、これにより出力されるレーザ光のビーム品質が低下してしまう。そのた めに、レーザ光をレンズで高密度に集光することが難しくなり、ピークパワーを上げる効果が 相殺されてしまう。そこで、図7のように、利得スイッチング動作により発生させた2つの光 パルスを、偏光ビームスプリッタで重ね合わせることで、低注入電流密度でもピークパワーの 増強ができるかを試みた。その結果、時間幅 100 ps の光パルスのピークパワーが 1.8 倍に増強 可能であることが分かった。同様な試みは、連続したレーザ光の高出力化のために行われてい るが、短パルスレーザではどこまで効果的を見極めたい。

< 引用文献 >

- [1] O. Shimomura, F.H. Johnson, and Y. Saiga, J. Cell. Comp. Physiol. 59, 223–239 (1962).
- [2] S. Koga, Y. Oshima, N. Honkura, T. Iimura, K. Kamada, K. Sato, M. Yoshida, Y. Yamamoto, Y. Watanabe, A. Hikita, T. Imamura et al., Cancer Sci. 105, 1299-1306 (2014).
- [3] M. Kuramoto, N. Kitajima, H Guo, Y. Furushima, M. Ikeda, and H. Yokoyama, Opt. Lett. 32, 2726-2728 (2007).
- [4] R. Koda, T. Oki, S. Kono, T. Miyajima, H. Watanabe, M. Kuramoto, M. Ikeda, and H. Yokoyama, Appl. Phys. Exp. 5, 022702 (2012).
- [5] S. Tashiro, Y. Takemoto, H. Yamatsu, T. Miura, G. Fujita, T. Iwamura, D. Ueda, H. Uchiyama, K. S. Yun, M. Kuramoto, T. Miyajima, M. Ikeda, and H. Yokoyama, Appl. Phys. Exp. 3, 102501 (2010).
- [6] S. Kono, R. Koda, H. Kawanishi, and H. Narui, Opt. Exp. 25, 14926-14934 (2017).
- [7] https://str-soft.com/devices/silense/
- [8] K. A. Bulashevich, V. F. Mymrin, S. Yu. Karpov, D. M. Demidov, and A. L. Ter-Martirosyan, Semicond. Sci. and Technol. 22, 502-510 (2007).
- [9] A. B. Fallahkhair, K. S. Li, and T. E. Murphy, J. Lightwave Technol. 26, 1423-1431 (2008).
- [10] G. Y. Robinson, Solid-State Electronics 18, 331-338 (1975).
- [11] M. Ogawa, J. Appl. Phys. 51, 406-412 (1980).
- [12] 小川正毅、応用物理 第 60 巻、171-172 (1991).
- [13] C. -Y. Su and C. Stolte, Electronics Letters 19, 891-892 (1983).
- [14] V. Ya. Niskov and G. A. Kubetskii, Soviet Physics Semiconductors 4, 1553-1554 (1971).
- [15] G. S. Marlow and M. B. Das, Solid-State Electronics 25, 91-94 (1982).
- [16] 宮嶋孝夫,荒川亮太,石川裕介,神林大介,森田悠斗,森本晃平,宇野光輝,下原光貴, 今井大地,成塚重弥、名城大学総合研究所紀要,第25号,pp.17-19 (2020).
- [17] 石川裕介,荒川亮太,神林大介,成塚重弥,今井大地,宮嶋孝夫、2019 年第88回応用物 理学会秋季学術講演会 講演予稿集, CD-ROM, 20p-E204-2,北大札幌キャンパス (2019).
- [18] T. Miyajima, H. Watanabe, M. Ikeda, and H. Yokoyama, App. Phys. Lett. 94, 161103 (2009).
- [19] H. Toyoda, Y. Murakami, R. Miyata, D. Imai, M. Miyoshi, T. Takeuchi, and T. Miyajima, Jap. J. Appl. Phys. **61**, SA1017 (2022).
- [20] 間渕勇多,太田翔也,鈴木晴道,今井大地,宮嶋 孝夫,2023 年第70回応用物理学会春季 学術講演会 講演予稿集,17p-B401-12,上智大学(2023).

5.主な発表論文等

〔雑誌論文〕 計3件(うち査読付論文 1件/うち国際共著 0件/うちオープンアクセス 0件)

1.著者名	4.巻
Imai Daichi、Murakami Yuto、Miyata Rino、Toyoda Hayata、Yamaji Tomoaki、Miyoshi Makoto、	59
Takeuchi Tetsuya, Miyajima Takao	
2.論文標題	5 . 発行年
Analysis of the optical constants and bandgap energy in Al _{1-x} ln _x N alloys	2020年
grown on a c-plane freestanding GaN substrate by using spectroscopic ellipsometry	
3.雑誌名	6.最初と最後の頁
Japanese Journal of Applied Physics	121001 ~ 121001
掲載論文のD01(デジタルオブジェクト識別子)	査読の有無
10.35848/1347-4065/abc29f	有
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

 著者名 宮嶋孝夫、荒川亮太、石川裕介、神林大介、森田悠斗、森本晃平、宇野光輝、下原光貴、今井大地、成塚	4.巻
重弥	25
2.論文標題	5 . 発行年
分子線エピタキシー法により成長したGaAs系半導体レーザの室温パルス発振	2020年
3. 雑誌名	6 . 最初と最後の頁
名城大学総合研究所 紀要	17-19
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
なし	無
「オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Hayata Toyoda, Yuto Murakami, Rino Miyata, Daichi Imai, Makoto Miyoshi, Tetsuya Takeuchi and	61
Takao Miyajima	
2.論文標題	5 . 発行年
Near-bandgap optical properties of Al1 - xlnxN thin films grown on a c-plane freestanding GaN	2022年
substrate	
3.雑誌名	6.最初と最後の頁
Japanese Journal of Applied Physics	SA1017-1~-3
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.35848/1347-4065/ac148a	無
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

〔学会発表〕 計4件(うち招待講演 0件/うち国際学会 1件)1.発表者名

間渕勇多、太田翔也、鈴木晴道、今井大地、宮嶋孝夫

2.発表標題

利得スイッチ駆動させた青紫色 GaN 系半導体レーザからの短パルス光の偏光多重とピークパワーの増強

3 . 学会等名

第70回応用物理学会春季学術講演会

4.発表年 2023年

1.発表者名

Hayata Toyoda, Yuto Murakami, Rino Miyata, Daichi Imai, Makoto Miyoshi, Tetsuya Takeuchi and Takao Miyajima

2.発表標題

Near-bandgap optical properties of Al1-xInxN thin films grown on a c-plane freestanding GaN substrate

3 . 学会等名

ISPIasma 2021(国際学会)

4.発表年

2021年

 1.発表者名 豊田隼大,村上裕人,宮田梨乃,今井大地,宮嶋孝夫,三好実人,竹内哲也

2.発表標題

分光エリプソメトリーを用いたAll-xInxN混晶の光学特性解析における誘電関数モデルの検討

3 . 学会等名

第68回応用物理学会春季学術講演会

4.発表年 2021年

1.発表者名

石川裕介、荒川亮太、神林大介、成塚重弥、今井大地、宮嶋孝夫

2.発表標題

分子線エピタキシー法で成長したGaAs系バイセクションレーザの設計と作製

3 . 学会等名

第80回応用物理学会秋季学術講演会 (2019 北海道大学 札幌キャンパス)

4.発表年 2019年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

6.研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	上山智	名城大学・理工学部・教授	
研究分担者	(Kamiyama Satoshi)		
	(10340291)	(33919)	

6	. 研究組織 (つづき)		
	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
	今井 大地	名城大学・理工学部・准教授	
研究分担者	(Imai Daichi)		
	(20739057)	(33919)	
	成塚 重弥	名城大学・理工学部・教授	
研究分担者	(Naritsuka Shigeya)		
	(80282680)	(33919)	

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------