科学研究費助成事業

研究成果報告書

ふむ 4 年 6 月 2 1 日現在

機関番号: 17102
研究種目: 基盤研究(B)(一般)
研究期間: 2019~2021
課題番号: 19H02790
研究課題名(和文)三重項励起準位制御に立脚した複合分子システムの構築と次世代有機デバイスの実現
研究課題名(英文)Development of molecular systems focusing on triplet excited states for high performance organic devices
研究代表者
像田 正史(Mamada, Masashi)
九州大学・工学研究院・助教
研究者番号:6 0 6 2 5 8 5 4
交付決定額(研究期間全体):(直接経費) 14,100,000円

研究成果の概要(和文):本研究では、三重項励起準位に関連した励起子過程の学理を深化させ高効率有機デバイスを実現することを目的とした。励起準位を高度に制御した熱活性化遅延蛍光(TADF)やそのホスト材料および 蛍光材料を創出し、高効率な有機発光ダイオード(OLED)まで実証した。材料安定性を向上させる分子設計指針を 導出し、安定な構造を用いて高い励起準位をもつ青色TADF材料を創出すとので、高色純度の再色OLEDの用法に 成功した。一方、高い量子収率を示す近赤外発光材料を開発し、TADF材料と組み合わせることで、高効率近赤外 0LEDも実現した。

研究成果の学術的意義や社会的意義 青色OLEDにおいて、三重項励起子が強く関与するりん光やTADFの実用化が遅れている原因は素子耐久性の低さに あるが、本研究において分子の安定性や励起子過程が素子耐久性に与える影響について多くの知見が得られたこ とは、さらなる特性向上に寄与する。一方、近赤外発光デバイスは通信やセンシング用途などを中心として産業 的な需要が非常に高く、高い発光効率を示す有機材料を創出できたことは、近赤外OLEDの開発を促進し、有機デ バイスの特徴を活かした新たなアプリケーションの開拓につながると期待される。

研究成果の概要(英文):There is increasing interest in excited state dynamics related to triplet states such as thermally activated delayed fluorescence (TADF) process for realizing highly efficient organic light-emitting diodes (OLEDs). Recent challenges include color purity, efficient deep-blue emission, exciton decay lifetimes, reverse intersystem crossing rates (kRISC), low-efficiency roll-off in organic light-emitting diodes (OLEDs), and long device lifetimes. In this study, we developed molecular design for stable emitter molecules to improve the device durability. Newly developed TADF molecules exhibited high excited state energies with dense alignment of several excited states. TADF-assisted fluorescence (TAF) OLED showed high external quantum efficiency with high color purity for blue. We also succeeded in developing highly emissive near-infrared emitters for high performance TAF-OLED.

研究分野: 有機機能材料

キーワード: 有機EL OLED TADF 逆項間交差 近赤外

科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属します。

1.研究開始当初の背景

有機発光ダイオード(OLED)は、実用化された技術であり社会情勢に応じた開発が求められて いる。一方、学術的な興味に基づいた基礎研究課題も多く残る。OLED は液晶ディスプレイに比 べ圧倒的にコントラスト比が高く、高画質なディスプレイを実現できることから、ポスト液晶の 位置を確立している。しかし、4K/8K 解像度の放送規格を満たすためには、CIE 色度図で広い範 囲をカバーする必要があり、より色純度の高い発光材料などが必要となる。さらに、青色におい ては、理論限界へ向けた高効率化も課題となっている。今後もマイクロ LED や QDOT 等の競合 技術との競争は続くと予想され、OLED でもさらなる技術革新が求められている。

熱活性化遅延蛍光(Thermally Activated Delayed Fluorescence、TADF)は、高効率 OLED の実現に 向けて応用的にも学術的にも注目されている技術である。蛍光材料を用いると、電荷再結合で生 成する 75%の三重項励起子を利用できないが、TADF 材料は、S₁とT₁のギャップ(ΔE_{ST})を小さく することで、逆項間交差(RISC)を通して三重項励起子の一重項準位からの発光を可能とする。 TADF 材料の一般的な分子設計は、電荷移動(CT)型の励起状態を示すドナーアクセプタ構造とな る。CT 性の発光であることからスペクトル半値幅が大きく、色純度が非常に悪いというデメリ ットがある。また、寿命の長い三重項励起子が貯まることで、材料の劣化を引き起こすことが指 摘されている。そこで、TADF での RISC に引き続き蛍光材料へエネルギー移動させる TADF-Assisted Fluorescence (TAF)機構が着目されている。よりスペクトル幅の狭い蛍光材料を用いるこ とができるため色純度が改善され、エネルギー移動により三重項励起子の蓄積を減らすことが できるため安定性も向上する。しかし、TAF 機構において TADF 材料は蛍光材料よりも高い励 起準位になければならず、特に青色では最適な材料が見出されていない。そのため、実用に向け た TADF 過程の更なる理解と機能開拓が必要である。

2.研究の目的

本研究では、TADF技術に関わる材料群について基礎と応用両面から俯瞰した開発を行い、その物理・化学現象の理解を深める。特に、三重項励起子が関与する励起子過程の学理の探究を進め、高性能素子の実現へとつなげることで産業化へ貢献することを目指す。

具体的には、次世代 OLED において主要な役割を果たすと期待される深青の TADF 材料や高 エネルギーホスト材料、優れた色純度の高効率蛍光材料などを創出し、それらから成る分子シス テムを構築し、高効率 OLED を実証する。さらに、高い耐久性を示すデバイスを実現するため、 材料安定性の向上も重要な要素技術開発と位置づけ、分子設計についての知見を得ることも目 的とした。また、材料開発と並行し、OLED の素子最適化、高い耐久性を示す素子設計の確立な ども目標とした。

3.研究の方法

1) 材料安定性に関する取組み:発光材料の安定性について理解し、その設計指針を得るため に、固体薄膜で用いることができる三重項除去剤を開発し、三重項励起子が安定性に与える影響 について検証した。一方、TADFを用いたデバイスでは三重項励起子を活用する必要があるため、 そのような添加剤は使用できない。そこで、分子の電子構造を変えずに剛直化した場合の安定性 について比較を行い、TADF 分子や TAF 機構で用いる材料の構造修飾に対する将来の展望を提 示する。

2) 高効率青色 TADF 材料の創出とデバイス開発: 青色 TAF に用いることができる高色純度の 発光材料(v-DABNA)が、本研究の初年度である 2019 年に畠山らによって報告されたため、これ に適合する TADF 材料の開発を進めた。v-DABNA の S₁および T₁は、それぞれ 2.75 eV、2.70 eV であることから、これよりも高いエネルギーレベルを有する材料が求められる。近年、TADF に 対する理解が進んだことで、三重項局所励起状態(³LE)の重要性が指摘されているが、3,6-ジフェ ニルカルバゾール(PhCz)の ³LE が 2.87 eV であり、理想的な位置にある。そこで、¹CT および ³CT のアライメントを実現するために、CT 性を精密に制御した分子を設計した。ここでは、構造の 剛直性や不安定官能基の排除についても考慮した。一連の材料の合成を行い、光学特性により分 子のエネルギーレベルについて詳細な理解を得た。ホスト材料にドープした薄膜を作製し、光学 特性の評価およびデバイス作製を実施した。キャリア輸送や再結合のメカニズムに対する検証 も行い、素子を最適化した。さらに、v-DABNA を用いた TAF デバイスを作製し、素子耐久性ま で評価した。材料を劣化させたサンプルを解析し、安定な材料の設計指針について考察した。

3) 近赤外発光材料の創出と TAF デバイス開発:近赤外領域の光は、センシング、測距、通信 など幅広い用途があり、高効率光源の需要は益々高まっている。RGB からなる OLED ディスプ レイに近赤外光のアレイを組み込み一体化することで、新たな機能性デバイスを創出でき、 OLED 産業の市場拡大に寄与する。特に、近赤外領域では、発光量子収率(PLQY)が低いという 問題があり、新規材料開発を進めた。これまで発光材料としてほとんど着目されていない種類の 化合物についても評価し、それらのポテンシャルを明らかにした。また、赤色 TADF を用いた TAF デバイスを作製した。 4.研究成果

4-1. 青色発光材料の光安定性向上

比較的安定かつ三重項励起子の寿命が短いスチルベン構造を有する蛍光材料を評価に用いた。 新規に開発した三重項除去剤は、有機半導体のホストとして広く用いられるカルバゾール誘導 体(mCP)にシクロオクタテトラエン(COT)を連結させた化合物(mCP-COT)である(図 1)。COT は 反芳香族性を避けるため基底状態では舟形の非平面構造をとるが、励起状態では平面構造にな り大きな構造緩和とともに素早く基底状態へと失活することから、三重項励起子の蓄積を防ぐ ことが可能と考えられる。COT は液体であるが、mCP-COT は固体として得られた。蛍光材料に mCP-COT をドープした薄膜を作製して光学特性を評価したところ、0-20 wt%のドープ濃度では PLQY は 70%程度でほぼ同等であった。そこで、一重項-三重項消滅(STA)を評価したところ、 mCP-COT を添加することでほとんど STA が消失した。一方、比較のために mCP をドープした 薄膜では、蛍光材料の単膜と同程度の STA を示した。これらの結果は、mCP-COT により一重項 励起子は影響を受けず、三重項励起子のみが効率的に除去されたことを示す。そこで、連続光励 起での発光減衰を評価したところ、mCP-COT の添加によって、寿命を 20 倍向上させることに 成功した。この結果により、三重項励起子が分子の励起状態での安定性に大きな影響を与えるこ とを示し、高い安定性を得る 1 つの手法を提示した(研究成果論文:*Nat. Commun.* 2020, *11*, 5623)。

一方、三重項励起子を活用するために励起子過程によらない安定性向上を目指し、構造の剛直 化を検討した。同様の蛍光材料をベースに、比較的弱い結合部位を架橋した新規蛍光材料を設計 した。この際、芳香族性の低いユニットを用いることで、電子構造を大きく変えないように工夫 した。実際に、電子スペクトルは架橋前とほぼ同様の結果を示した。一方、架橋による構造剛直 化が影響したためか、三重項励起子の寿命はわずかに増加した。それにもかかわらず、励起状態 の安定性は 20 倍向上した。この結果から、三重項励起子を除去せずとも分子の安定性を大幅に 増大させることができる可能性が示唆され、安定な TADF 材料開発に向けた指針も得ることが できた(研究成果論文: ACS Mater. Lett. 2020, 2, 161)。

図 1. 光耐久性比較、a) 三重項除去剤添加による安定性向上、b) 構造剛直化による安定性向上

4-2. 高効率青色 TADF 材料の設計

PhCz の³LE に近い¹CT を実現するため、弱いアクセプター構造のベンゾニトリル(BN)を結合 させた TADF 分子を設計した。比較化合物として、異なるドナー構造の化合物や、異なる数のド ナーアクセプタユニットを持つ化合物を合成した。中心のベンゼン環に全て芳香環を結合させ ることで、分子内 - 相互作用により構造の剛直化を図った。それぞれの化合物の蛍光および りん光スペクトルから、4 つの PhCz と 2 つの BN を持つ 4PhCz2BN (図 2)は、¹CT、³CT、ドナー およびアクセプタの ³LE が 0.05 eV 程度の狭いエネルギー範囲に密集していることが分かった。

図 2. 新規 TADF 材料を用いた薄膜の発光特性、a) 蛍光スペクトルとりん光スペクトル、b) 蛍 光寿命

クロロホルム溶液中の発光波長は 479 nm、PLQY は 92%、遅延蛍光寿命は 2.6 μ s であり、優れ た光学特性を示すことを確認した。mCBP を用いて 4PhCz2BN を 20 wt%ドープした薄膜におい ても小さな ΔE_{ST} を示し(図 2a)、その結果、1.6 μ s という短い遅延寿命が観測された(図 2b)。発光 波長は 479 nm、量子収率は 87%であった。これらの結果から、放射速度定数(k_r)は 5 × 10⁷ s⁻¹、 RISC 速度(k_{RISC})は 2 × 10⁶ s⁻¹ と計算され、優れた物性をもつ TADF 材料の創出に成功した。さら に、ドープ濃度をあげた場合、わずかに量子収率は下がるものの、高い S₁ レベル、小さな ΔE_{ST} と大きな k_{RISC} を維持できることが分かった。

次に 4PhCz2BN の薄膜を用いた OLED を作製した。デバイスは、PhCz や BN ユニットからな る類似の化合物に最適化された構造を参考にした(図 3)。一般的に TADF 材料のドープ濃度は 20 wt%以下とされることが多い。しかし、ホールプロック層(HBL)や電子プロック層(EBL)の構成を 変更したデバイスや、ホールオンリーデバイス(HOD)および電子オンリーデバイス(EOD)を作製 し、特性を評価したところ、20 wt% ドープ濃度の発光層においては、ホール移動度に比べ電子移 動度が低く、キャリアバランスに問題があることが判明した。そこで、50 wt%にドープ濃度を増 加させたところ、良好なキャリアバランスを示すことが分かった。実際に、10 wt%、20 wt%、50 wt%のドープ濃度の OLED を比較すると、効率ロールオフに大きな違いが観測され(図 3b)、低濃 度では狭い再結合領域に起因した一重項-ポーラロン消滅(SPA)などが生じていると考えられる。 50 wt%における効率ロールオフは非常に小さく、20,000 cd m⁻¹の高輝度においても最大効率から の減少は 30%に留まる。効率ロールオフは長寿命の三重項励起子の蓄積と相関があるとされ、効 率的な RISC により小さくできると考えられている。ここで得られた性能は、107 s⁻¹の非常に大 きな k_{RISC} を示す材料に匹敵する世界最高レベルの結果である。

分子配向の解析から、大きな水平配向性が確認でき、光取出しに有利であることも明らかとなった。PLQY や光取出し効率から計算した理論外部量子効率と実験値を比べることで1%程度のロスが生じていることが確認され、高い三重項準位からの損失がわずかに存在することが示唆された。このことから、ホスト材料や HBL 材料の課題も明らかとなった。これらのデバイスは高いドープ濃度においても CIEy が 0.4 以下の青色を示し、TAF への応用が期待された。

図 3. a) 素子構造、b) OLED の外部量子効率-輝度特性、c) EL スペクトル

TAF デバイスは、20 wt%および 50 wt%の 4PhCz2BN に対し、v-DABNA を 0.5 wt%および 1 wt%ドープした。v-DABNA のドープ濃度を増加させるとデバイス特性が著しく低下することが分かった。そのため、4PhCz2BN についても低いドープ濃度をもつデバイスが良い結果を示した。 最大外部量子効率は 22%であり(図 4a)、TADF 材料で高いエネルギーレベルを実現したことから v-DABNA へのエネルギー移動も効率的に生じ、CIE が(0.13,0.15)の優れた色純度のデバイスの実証に成功した(図 4b)。

続いて、これらのデバイスの耐久性について評価した(図 4c)。素子駆動時間は、TADF 材料を 用いない v-DABNA のデバイスに比べ格段に向上した。しかし、実用化に向けては、さらなる素 子寿命の向上が求められる。劣化させた材料の解析では、安定と考えられている炭素-炭素結合 開裂による分解物などが検出された。比較的安定と考えられる部分構造を用いていたが、今後は 結合様式などに細心の注意を払った分子設計が必要であることが明らかとなった。

4-3. 近赤外発光材料の創出

近赤外領域で高い発光量子収率を示す材料として、二フッ化ホウ素構造を持つアクセプタと ドナーであるトリフェニルアミンを連結したドナーアクセプタ化合物を設計した。ドープ薄膜 において、724 nm の発光波長と45%の PLQY を示し、かつ遅延蛍光を示す新規 TADF 材料を創 出した(研究成果論文: Adv. Optical Mater. 2021, 9, 2001947)。また、ピロロピロールアザ BODIPY 骨格をもつ材料は、より長波長での発光を示した。これを蛍光材料とし赤色 TADF 材料を組み合 わせた TAF-OLED では、760 nm に発光極大をもつ EL スペクトルと 3.7%の高い外部量子効率を 示した(図 5)。デバイスは蒸着法よりも効率が低くなる傾向がある塗布法で作製したが、これま でに報告されている近赤外 OLED と比べても高い効率を実証した(研究成果論文: Chem. Eur. J. 2021, 27, 5259)。ドープ濃度を増大させると効率が低下することから、蛍光材料でのキャリアト ラップと再結合が生じていると考えられる。低濃度においても、理論効率の 50%程度の特性であ った。そのため、ホスト材料の HOMO-LUMO 準位の制御などで電荷輸送性を改善することなど、 今後の開発方針も得られた。

図 5. 近赤外 OLED 特性、a) EL スペクトル、b) 外部量子効率-電流密度、c) 電流密度-電圧特性

また、新たな近赤外発光材料を開拓するため、これまで発光材料としては着目されていない一 重項ビラジカル性を有する化合物に着目して開発を進めた。一重項ビラジカル化合物は、ビラジ カル性の増大とともにエネルギーギャップが低下するため、多くは近赤外領域に到達する吸収 を示す。 p-キノジメタン構造が芳香族性獲得のためビラジカルの寄与を取り込むことを利用した インデノフルオレン誘導体や、アセンのペリ方向に 共役を拡張したナノグラフェンなどが代 表例である。ボトムアップ合成で、新規 共役系を構築し、様々な新規一重項ビラジカル化合物 の創出に成功した(図 6)。インデノフルオレン誘導体は、ほとんど発光を示さなかったが、アセ ンを拡張したアセノアセンでは近赤外発光が観測された(研究成果論文: J. Am. Chem. Soc. 2019, 141,9373、Chem. Sci. 2020, 11, 12194、Chem. Sci. 2021, 12, 552)。PP1 は、900 nm 以上の波長で 0.8% の PLQY を示した。一般的に、エネルギーギャップ則として知られるように、励起状態エネルギ ーが低くなると振動準位との重なりが大きくなり、無放射失活が指数関数的に増大する。そのた め、単純な多環芳香族炭化水素であることを考慮すると、拡張アセンは高いポテンシャルを有し ていると言える。そこで、ビラジカル性を低下させた PP2 を設計し、合成した。トルエン中で 740 nm の発光極大を示し、PLQY は 27%であった。このように高い PLQY は、2 次元方向への 拡張で構造が剛直化し、C=C ねじれのような励起状態の構造緩和が抑制され再配向エネルギー が低下したことに起因すると考えられる。さらに、デバイス化のために TADF 材料を用いた薄膜 を作製した。PP2 のドープ濃度を最適化したところ、800 nm を超える発光波長で、10%以上の PLQY を示した。デバイスでは、0.6%の外部量子効率を観測した。これは、これまで報告された TADF-OLED と比べても長波長領域に位置し効率も高いことから、一重項ビラジカル性を有する 拡張アセンが近赤外発光材料としても高いポテンシャルを有していることが明らかになった(研 究成果論文: Angew. Chem. Int. Ed. 2022, 61, e202112794)。

図 6. 一重項ビラジカル化合物の構造および OLED 効率の文献値との比較

5.主な発表論文等

〔雑誌論文〕 計15件(うち査読付論文 15件/うち国際共著 10件/うちオープンアクセス 1件)

1.著者名 Mamada Masashi、Nakanotani Hajime、Adachi Chihaya	4 . 巻 2
2.論文標題	5 . 発行年
Amplified spontaneous emission from oligo-p-phenylenevinylene) derivatives	2021年
3.雑誌名	6.最初と最後の頁
Materials Advances	3906 ~ 3914
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1039/DOMA00756K	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	-

1.著者名	4.巻
Ishii Tomohiro, Miyata Kiyoshi, Mamada Masashi, Bencheikh Fatima, Mathevet Fabrice, Onda Ken,	10
Kena Cohen Stephane, Adachi Chihaya	
2.論文標題	5 . 発行年
Low Threshold Exciton Polariton Condensation via Fast Polariton Relaxation in Organic	2021年
Microcavities	
3. 雑誌名	6.最初と最後の頁
Advanced Optical Materials	2102034 ~ 2102034
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1002/adom.202102034	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1. 著者名	4.巻
Jousselin Oba Tanguy, Mamada Masashi, Wright Karen, Marrot Jerome, Adachi Chihaya, Yassar	61
Abderrahim、Frigoli Michel	
2.論文標題	5 . 発行年
Synthesis, Aromaticity, and Application of peri Pentacenopentacene: Localized Representation	2021年
of Benzenoid Aromatic Compounds	
3. 雑誌名	6.最初と最後の頁
Angewandte Chemie International Edition	e202112794 ~ 4
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1002/anie.202112794	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
Wallwork Nicholle R., Mamada Masashi, Shukla Atul, McGregor Sarah K. M., Adachi Chihaya, Namdas	10
Ebinazar B., Lo Shih-Chun	
2.論文標題	5 . 発行年
High-performance solution-processed red hyperfluorescent OLEDs based on cibalackrot	2022年
3. 雑誌名	6.最初と最後の頁
Journal of Materials Chemistry C	4767 ~ 4774
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1039/D1TC04937B	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
Wallwork Nicholle R. Mamada Masashi Keto Angus R. McGregor Sarah K. M. Shukla Atul Adachi	
Chihaya, Krenske Elizabeth, Namdas Ebinazar B., Lo Shih, Chun	
2.論文標題	5 . 発行年
Cibelookant Dendrimere for Humerfluereseent Organic Light Emitting Diedee	2022年
Cibarackrot bendrimers for Hyperridorescent organic Light Emitting brodes	2022年
3、维誌名	6 最初と最後の百
Macromolecular Rapid Communications	2200118 ~ 2200118
想動会立の2017 デジタルナブジェクト 塗りてい	木柱の左伸
拘戦調文のDOT(テンタルオノシェクト識別士)	直記の有無
10.1002/marc.202200118	有
+	国際共 業
	国际共有
オーブンアクセスではない、又はオーブンアクセスが困難	該当する
• #**	• ***
	4. 奁
Ovama Yuya, Mamada Masashi, Kondo Akihiro, Adachi Chihava	9
2. 論又標題	5. 発行年
Advantages of naphthalene as a building block for organic solid state laser dyes: smaller	2021年
oncrear gape and onbanced stability	
3.雑誌名	6.最初と最後の頁
Journal of Materials Chemistry C	4112~4118
outhat of materials onemistry o	7112 7110
掲載絵文のDOL(デジタルオブジェクト辨別ス)	本語の右無
指載調文のDOT(アンタルオンシェント識別士)	直流の有無
10.1039/D0TC05387B	有
オープンマクセフ	国際卅茎
	国际共有
オーブンアクセスではない、又はオーブンアクセスが困難	-
1	4 类
1.著者名	4.巻
1.著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta	4.巻 27
1.著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hirovuki、Shimizu Soii	4.巻 ²⁷
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2 谷文博師	4.巻 27 5 聚行在
1.著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji 2.論文標題	4.巻 27 5.発行年
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji :論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR 	4 . 巻 27 5 . 発行年 2021年
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 	4 . 巻 27 5 . 発行年 2021年
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 	4 . 巻 27 5 . 発行年 2021年
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji :論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission :雑誌名 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji :論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission :雑誌名 Chemistry - A European Journal 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji :論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission :雑誌名 Chemistry - A European Journal 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267
 著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji :論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission :雑誌名 Chemistry - A European Journal 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267
 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji : 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission : 雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオプジェクト識別子) 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無
 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji : 論文標題	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無 有
 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 論文標題	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無 有
 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 論文標題	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有
 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji :論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission :雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス 	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無 有 国際共著 該当する
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無 有 国際共著 該当する
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 1.著者名	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオプジェクト識別子) 10.1002/chem.202005360 オープンアクセス 1.著者名 Mamada Masashi, Goushi Kenichi, Nakamura Byota, Kaji Hiropori, Adachi Chihaya	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス 1.著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50
1.著者名 Kage Yuto、Kang Seongsoo、Mori Shigeki、Mamada Masashi、Adachi Chihaya、Kim Dongho、Furuta Hiroyuki、Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス 1.著者名 Mamada Masashi、Goushi Kenichi、Nakamura Ryota、Kaji Hironori、Adachi Chihaya	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3. 雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオプジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス オープンアクセス 2.論文標題	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス オープンアクセス 2.論文標題 Synthesis and Characterization of 5.5	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene	 4 : 巻 27 5 : 発行年 2021年 6 : 最初と最後の頁 5259 ~ 5267 査読の有無 有 国際共著 該当する 4 : 巻 50 5 : 発行年 2021年
 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji : 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission : 雑誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス オープンアクセスctはない、又はオープンアクセスが困難 1. 著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya : 論文標題 Synthesis and Characterization of 5,5 -Bitetracene 	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオプジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 1.著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3. 雑誌名 Chemistry - A European Journal 掲載論文のDDI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 1. 著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2. 論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3. 雑誌名 Chemistry Latters	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~802
1. 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2. 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3. 雑誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス 1. 著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2. 論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3. 雑誌名 Chemistry Letters	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803
1. 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2. 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3. 雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 1. 著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2. 論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3. 雑誌名 Chemistry Letters	4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名 Chemistry Letters	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名 Chemistry Letters	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名 Chemistry Letters	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803 査読の有無
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名 Chemistry Letters	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803 査読の有無 7
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.雑誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセスではない、又はオープンアクセスが困難 1.著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名 Chemistry Letters 掲載論文のDOI (デジタルオブジェクト識別子) 10.1246/cl.200909	 4 : 巻 27 5 : 発行年 2021年 6 : 最初と最後の頁 5259 ~ 5267 査読の有無 有 国際共著 該当する 4 : 巻 50 5 : 発行年 2021年 6 : 最初と最後の頁 800 ~ 803 査読の有無 7 査読の有無 7
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.鍵誌名 Chemistry - A European Journal 掲載論文のDOI (デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス Z.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.鍵誌名 Chemistry Letters 掲載論文のDOI (デジタルオブジェクト識別子) 10.1246/c1.200909	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803 査読の有無 有 国際共著
1.著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2.論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3.独誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス 2.論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3.雑誌名 Chemistry Letters 10.1246/cl.200909 オープンアクセス	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259~5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800~803 査読の有無 7 百際共著
1 : 著者名 Kage Yuto, Kang Seongsoo, Mori Shigeki, Mamada Masashi, Adachi Chihaya, Kim Dongho, Furuta Hiroyuki, Shimizu Soji 2 : 論文標題 An Electron Accepting aza BODIPY Based Donor-Acceptor-Donor Architecture for Bright NIR Emission 3 : 雑誌名 Chemistry - A European Journal 掲載論文のDOI(デジタルオブジェクト識別子) 10.1002/chem.202005360 オープンアクセス オープンアクセス オープンアクセス 1 : 著者名 Mamada Masashi, Goushi Kenichi, Nakamura Ryota, Kaji Hironori, Adachi Chihaya 2 : 論文標題 Synthesis and Characterization of 5,5 -Bitetracene 3 : 雑誌名 Chemistry Letters 掲載論交のDOI(デジタルオブジェクト識別子) 10.1246/cl.200909 オープンアクセス オープンアクセス	 4 . 巻 27 5 . 発行年 2021年 6 . 最初と最後の頁 5259 ~ 5267 査読の有無 有 国際共著 該当する 4 . 巻 50 5 . 発行年 2021年 6 . 最初と最後の頁 800 ~ 803 査読の有無 有 国際共著

1.著者名 Aoki Reiko、Komatsu Ryutaro、Goushi Kenichi、Mamada Masashi、Ko Soo Young、Wu Jeong Weon、 Placide Virginie D'Aleo Anthony Adachi Chibaya	4.巻 9
2.論文標題 Realizing Near Infrared Laser Dyes through a Shift in Excited State Absorption	5 . 発行年 2021年
3.雑誌名 Advanced Optical Materials	6.最初と最後の頁 2001947~2001947
	木詰の左毎
10.1002/adom.202001947	直読の有 <u>無</u> 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著 該当する
1.者者名 Mamada Masashi、Nakamura Ryota、Adachi Chihaya	4.
2.論文標題 Synthesis, crystal structure and charge transport characteristics of stable peri-tetracene analogues	5 . 発行年 2021年
3.雑誌名 Chemical Science	6 .最初と最後の頁 552~558
 掲載論文のDOI(デジタルオブジェクト識別子) 10.1039/D0SC04699J	
1.著者名 Jousselin-Oba Tanguy、Mamada Masashi、Okazawa Atsushi、Marrot Jerome、Ishida Takayuki、Adachi Chihaya、Yassar Abderrahim、Frigoli Michel	4 .巻 11
2 . 論文標題 Modulating the ground state, stability and charge transport in OFETs of biradicaloid hexahydro- diindenopyrene derivatives and a proposed method to estimate the biradical character	5 . 発行年 2020年
3.雑誌名	6.最初と最後の頁
Chemical Science	12194 ~ 12205
掲載論文のDOI(デジタルオプジェクト識別子) 10.1039/D0SC04583G	 査読の有無 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著 該当する
1.者右名 Mamada Masashi、Komatsu Ryutaro、Adachi Chihaya	4.
2 . 論文標題 F8BT Oligomers for Organic Solid-State Lasers	5 .発行年 2020年
3.雑誌名 ACS Applied Materials & Interfaces	6 . 最初と最後の頁 28383~28391
掲載論文のDOI(デジタルオブジェクト識別子) 10.1021/acsami.0c05449	査読の有無 有
オープンアクセス オープンアクセスではない、又はオープンアクセスが困難	国際共著

1.著者名 Mai Van T. N.、Ahmad Viqar、Mamada Masashi、Fukunaga Toshiya、Shukla Atul、Sobus Jan、Krishnan Gowri、Moore Evan G.、Andersson Gunther G.、Adachi Chihaya、Namdas Ebinazar B.、Lo Shih-Chun	4.巻 11
2.論文標題	5 . 発行年
Solid cyclooctatetraene-based triplet quencher demonstrating excellent suppression of singlet- triplet annihilation in optical and electrical excitation	2020年
3. 雑誌名	6.最初と最後の頁
Nature Communications	5623
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1038/s41467-020-19443-z	有
オープンアクセス	国際共著
オープンアクセスとしている(また、その予定である)	該当する

1.著者名	4.巻
Yuya Oyama, Masashi Mamada, Atul Shukla, Evan G. Moore, Shih-Chun Lo, Ebinazar B. Namdas,	2
Chihaya Adachi	
2.論文標題	5 . 発行年
Design Strategy for Robust Organic Semiconductor Laser Dyes	2020年
3.雑誌名	6.最初と最後の頁
ACS Materials Letters	161-167
掲載論文のDOI(デジタルオブジェクト識別子)	査読の有無
10.1021/acsmaterialslett.9b00536	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

1.著者名	4.巻
Yun Long, Masashi Mamada, Chunyong Li, Paloma Lays dos Santos, Marco Colella, Andrew Danos,	11
Chihaya Adachi, Andrew P. Monkman	
2.論文標題	5 . 発行年
Excited State Dynamics of Thermally Activated Delayed Fluorescence from an Excited State	2020年
Intramolecular Proton Transfer System	
3.雑誌名	6.最初と最後の頁
The Journal of Physical Chemistry Letters	-
掲載論文のDOI(デジタルオプジェクト識別子)	査読の有無
10.1021/acs.jpclett.0c00498	有
オープンアクセス	国際共著
オープンアクセスではない、又はオープンアクセスが困難	該当する

〔学会発表〕 計3件(うち招待講演 1件/うち国際学会 0件)

1.発表者名 青木怜子・小松龍太郎・Anthony D'Aleo・儘田正史・安達千波矢

2 . 発表標題

低レーザー閾値を有する近赤外有機レーザー材料の開発

3 . 学会等名

第81回応用物理学会秋季学術講演会

4.発表年 2020年

1.発表者名

大山裕也・儘田正史・近藤晃弘・安達千波矢

2.発表標題

有機レーザー色素の長波長化と耐久性向上を可能とする分子構造の探索

3.学会等名第81回応用物理学会秋季学術講演会

4 . 発表年

2020年

1.発表者名 Masashi Mamada

2.発表標題

Singlet Biradical Compounds: Development and Application to Organic Electronic Devices

3 . 学会等名

The 100th CSJ Annual Meeting, 3E4-30(招待講演)

4.発表年

2020年

〔図書〕 計0件

〔産業財産権〕

〔その他〕

-

6	研究組織

	氏名 (ローマ字氏名) (研究者番号)	所属研究機関・部局・職 (機関番号)	備考
--	---------------------------	-----------------------	----

7.科研費を使用して開催した国際研究集会

〔国際研究集会〕 計0件

8.本研究に関連して実施した国際共同研究の実施状況

共同研究相手国	相手方研究機関
---------	---------