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In this research, I aimed at the development of disease progression model
for prediction of the fibrosis stage in patients with chronic liver diseases. During the research
period, | proposed an automated diagnosis approach based on MR images. By using a statistical shape
model based on Partial Least Squares (PLS) method, an accuracy for early detection of liver fibrosis

of 90+ 3% was obtained. The developed model did not only represent commonly observed generic
variations associated with liver fibrosis, but also localized variations. This has shown the
scientific significance of the developed model (I1JCARS; Impact Factor: 2.473, JAMIT2019). In
addition, a large-scale database of 251 MR images with ground-truth labels for the liver and spleen,
and automatic segmentation research was performed (JAMIT2020).
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Statistical test: Wilcoxon signed rank test
FO1vs. F2-4 F0-2vs. F3-4 FO-3vs. F4
AUC, PLS 0.903 + 0.030 0.796 * 0.047 0.819 + 0.046
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