2018 2019

Cotask-Aware Offloading and Scheduling in Mobile-Edge Computing Systems

Cotask-Aware Offloading and Scheduling in Mobile-Edge Computing Systems

Chiang, Yi-Han

2,300,000

NP

Mobile ed?e computing (MEC) systems provide mobile devices (MDs) with
low-latency cloud services by deploying edge servers (ESs) in the vicinity. In fact, various mobile
applications may generate cotasks, each of which is completed only if all its constituent tasks are
finished. In this research, we investigate the problem of joint cotask-aware offloading and
scheduling in MEC systems (Cool-Edge), and we formulate it as a mixed integer non-linear program
(MINLP) to minimize average cotask completion time (ACCT). To cope with the Cool-Edge problem, we
propose two low-complexity algorithms to offload cotasks based on an LP rounding technique and
schedule them according to an earliest-cotask-arrival-first rule, respectively, and we further prove
the approximation factor jointly achieved by the two algorithms. Finally, we conduct testbed
experiments and simulations to demonstrate the effectiveness of our proposed solution, and we also

show how ACCT varies with the network environment.

XL C—19, F-19—1, Z—19 (M)
1. WFZEBAR S 1D 5

Recent advances show that various emerging delay-sensitive applications have proliferated
and become parts of mobile devices (MDs) in recent years. However, resource-constrained
MDs (due to their limited battery lives and computing resources) may have difficulties in
performing computation-intensive jobs while meeting stringent delay requirements.
Therefore, mobile edge computing (MEC) systems [1]-[5] came into the world to resolve this
problem by deploying edge servers (ESs) on the network edge, thereby providing low-latency
cloud services to MDs.

To fully grasp the potentials of MEC systems, leveraging parallel processing that admits
jobs to be processed on independent machines is an effective way to exploit the networked
computing resources. In [6], Kosta et al proposed a framework to facilitate on-demand
resource allocation and parallelism for managing virtual machines in the cloud. In [7], Jia et
al. designed an online task offloading algorithm for concurrent tasks, where the edge and
cloud computation can be performed in parallel. In [8], Yang et al investigated the problem
of joint computation partitioning and resource allocation, where each user’s application is
divisible into modules that can be processed concurrently. In fact, mobile applications may
generate data-parallel jobs as cotasks: each cotask is completed only if all its constituent sub-
tasks are finished and returned to the hosting MD, and its completion time is determined by
the latest completion time among all of the constituent sub-tasks. Despite the above works
that guide us to leverage parallel processing to accelerate computation for MDs, none of them
can tell us how to properly allocate computing resources to cotasks in MEC systems.

2. WHEOHEK
The purpose of this research is to investigate the problem of cotask-aware offloading and

scheduling in MEC systems and show how to better utilize the networked computing

resources. To this end, we plan to take the following actions for the success of this research.

« To study how the cotask feature matters in the design of MEC offloading and scheduling.

. To formulate the Cool-Edge problem as an MINLP to minimize ACCT and show its NP-
hardness.

. To propose approximation algorithms to offload cotasks based on the LPR technique and
employ the ECAF rule for scheduling, respectively.

. To prove that the approximation factor of 4x(1+ €)+ 2p is achievable for any € > 0,
where x and p refer to the ratios of machine computability and radio access delays,
respectively.

« To conduct testbed experiments and simulations to show the effectiveness of our proposed
solution.

3. WHED Tk

In this research, we investigate the problem of cotask-aware offloading and scheduling in
MEC systems (Cool-Edge). The Cool-Edge problem can be characterized as a mixed integer
non-linear program (MINLP), the objective of which is to minimize average cotask completion
time (ACCT). Due to the NP-hardness of the Cool-Edge problem, we are motivated to design
approximation algorithms with a provable performance guarantee. Our proposed solution
consists of two consecutive phases. First, we propose the cotask-aware offloading algorithm
(denoted by CoOFLD) to minimize the makespan for each cotask, and then apply an LP
rounding (LPR) technique that explores a perfect matching from a constructed bipartite
graph. Next, we design the cotask-aware scheduling algorithm (denoted by CoSKED) to
schedule cotasks according to the earliest-cotask-arrival-first (ECAF) rule in the way that
the earliest cotask arriving at the network edge will be processed first by all ESs. We conduct
testbed experiments to assert the practicability of our proposed solution. In larger network
scales, we run simulations to demonstrate the achieved ACCT as well as the impacts of the
constitution of cotasks and the distribution of computing resources.

4. WFFERCR

To demonstrate the ACCT performance of our proposed solution, we consider various
offloading and scheduling schemes for comparison (see TABLE I), including CoCo (the
proposed CoOFLD and CoSKED), MC/RC (existing offloading schemes combined with
CoSKED), CS/CL (CoOFLD combined with existing scheduling schemes), and NN (the
baseline scheme with merely local computation).

- Testbed Experiments

We construct an MEC system (see FIGURE 1(a)) of 2 ESs (desktop computers with Intel
Core 176700K processors) and 2 MDs (smartphones with the Qualcomm Snapdragon 835
mobile PC platform), where each ES is equipped with a USB Wi-Fi adapter (Alfa Network
AWUS036ACH). The controller is implemented in one of the ESs, and it connects ESs through
a Wi-Fi router (Aterm WG2600HP2).

A simple application is made to capture the cotask feature in the MEC system: the mission
of each cotask is to count the detected frontal faces, and the constituent sub-tasks represent
a set of images for counting. To this end, we collect 103 images from Pexels [9] and use Dlib
[10] to detect frontal faces. The set of collected images consists of five different image qualities.
We measure the elapsed processing time (see TABLE II), which is shown to grow with image
qualities. These measurement results will further be used to set the processing time of tasks
as well as the ratio of machine computability in our simulations.

In our testbed (see FIGURE 1(a)), we randomly choose 6 images to form a cotask. FIGURE
1(b) illustrates the spatial-temporal dynamics of the two cotasks. It can be seen that CoOFLD
produces a balanced offloading while CoOSKED enables the early cotask to be scheduled first,
which conforms to our designed solution. FIGURE 1(c) indicates the corresponding elapsed
time on average, from which we see that all PUs are efficiently utilized and no much waiting
time on ESs, which affirm the practicability of our proposed solution. Moreover, we observe
that the effect of shared network bandwidth (in terms of uplink and downlink delays) is not
pronounced, since the effect of shared computing resources (in terms of processing and
waiting time) plays a more dominant role in the resulting CCT.

3 Early cotask
I Late cotask

[Early cotask
=1 Late cotask

£s1
{w/ Controller)

UL+DL Walt. (MD) Walt. (ES} Proc. (MD) Proc. (ES)

()

()
FIGURE 1: Testbed environment and the measurement results under CoCo.
(a) The testbed setup. (b) The proc. time of the two cotasks. (c) The elapsed time profile.

(a)

TABLE I: The offloading and scheduling comparison schemes.

Acronyms MC RC CoCo CS CL NN

Offloading schemes MT! RR2 CoOFLD | CoOFLD | CoOFLD | @5

Scheduling schemes | CoOSKED | CoSKED | CoSKED SPT3 LPT4 @5

IMC: Each task is processed by the PU that minimizes its TCT.

2RR: Each MD offloads tasks in a round robin fashion.

3SPT: Each ES schedules the shortest-processing-time task first.

1LPT: Each ES schedules the longest-processing-time task first.

50 No MDs offload tasks and hence ESs have nothing to schedule.

TABLE II: The elapsed time for processing.

Image quality 640%x360 | 960x540 | 1280%x720 | 1600x900 | 1920%x1080
ES’s Processing time [s] 0.1145 0.2556 0.4446 0.6966 0.9889
MD’s Processing time [s] 0.1893 0.4319 0.7572 1.1863 1.7087
Machine computability ratio 1.653 1.689 1.703 1.703 1.728

- Simulations
Here, we consider an MEC system of 5 ESs and 15 MDs. Each cotask is formed by randomly
selected 30 images, and the release time of cotasks is determined by a Poisson process with
the mean of 0.1 seconds. The uplink and downlink delays between an MD and an ES are both
uniformly distributed in the range of [0.1,0.3] seconds. The error-tolerant parameter is set to
1/108. According to the measurement results in TABLE II, we set the ratio of machine
computability to 1.7 unless stated otherwise. All results are averaged over 100 iterations.

30| [Waiting on MD [Processing
—— |0 Waiting on ES I UL+DL 100,
25 |
20 £ g
= § 5
El =
E 15 £ B
g a E]
£ a
I 8 E
10 » 8
g’ o
5|
o % s
mMC RC CoCo cs cL NN
Comparison schemes 0 1oz 3 4 5 6 7 8 9 10 5 10 15 20 25 30 35 40 45 50
Number of ESs
Number of MDs
(a) () (c)

FIGURE 2: The achieved ACCT and the exploitation of edge computation. (a) The elapsed
time profile. (b) The impact of the number of ESs. (c) The impact of the number of MDs.

Our proposed solution is shown to outperform the comparison schemes in terms of ACCT.
In FIGURE 2(a), we see that CoCo strikes a good balance between processing time and
waiting time. Specifically, CoCo gains from lower waiting time as compared with MC and RC,
since it intends to offload tasks to PUs in a balanced way to avoid stacking tasks on a
processing unit (PU) (since both MDs and ESs are capable of processing sub-tasks, we call
them PUs for brevity). On the other hand, CoCo enables cotasks to be scheduled in the same
order on all ESs, and hence it prevents the early completed tasks of a cotask from waiting for
the completion of other constituent sub-tasks, thereby achieving lower ACCT with respect to
CL, CS and NN. Altogether, CoCo offloads tasks in a balanced way and schedule cotasks
synchronously, and therefore it performs better than the comparison schemes.

The exploitation of edge computation provides evidences to the achieved ACCT gain.
FIGURE 2(b) and 2(c) show that the exploitation of edge computation increases with the
number of ESs and decreases with that of MDs, respectively. This is because the benefit of
edge computation is pronounced if there are not too many tasks queued on ESs. If the number
of MDs are relatively larger than that of ESs, the benefit of edge computation diminishes
since the offloaded tasks will encounter large waiting time, and hence less edge computation
is preferable. Another observation is that the exploitation of edge computation essentially
does not approach to 100%. The reason is that each hosting MD needs to wait for the last
returned task. If the hosting MD can process a small portion of its tasks locally while waiting
for the offloaded tasks to return, its CCT can be further reduced as compared with doing all
computation on the edge.

—2— 10 tasks —#— 5 cotasks
< 0r 20 kasks -0+ 10 ecotasks
e 30 tasks. o 15 cotasks | 1
=-00-- 40 tasks =-f1-- 20 cotasks
- ©- 50 tasks <- 25 cotasks

Zia
10 20 30 40 50 B0
CTIs]

s 100
80|

60|

Edge computation (%}

<
i
»-
-0

a
-1
o

40|

20|

20 25 30 35 40 45 50
Number of cotasks

(a)

5 10 15 20 25 30 35 40 45 50
Number of constituent tasks

(b)

0 5 10 15 20 25 30

Number of ESs

()

FIGURE 3: The achieved ACCT and the exploitation of edge computation under CoCo. (a)
The impact of the number of cotasks. (b) The impact of the number of sub- tasks. (c) The
impact of the number of ESs.

The numbers of constituent sub-tasks, cotasks and ESs have prompt effects on ACCT
performance. In FIGURE 3(a) and 3(b), we see that ACCT increases with the numbers of
constituent sub-tasks and cotasks. This is because there are more tasks to be processed, and
hence longer elapsed time for processing can be observed. In addition, as the number of tasks
per cotask increases, the exploitation of edge computation first increases and then saturates.
The saturation happens since plenty of tasks are waiting for processing on ESs, from which
we see that a balanced local and edge computation attains better ACCT.

The more the number of ESs or the higher ratio of machine computability, the lower the
achieved ACCT. In FIGURE 3(c), it can be seen that ACCT is lower whenever there are
abundant computing resources. Another notable fact is the distribution of computing
resources. Given a fixed amount of computing resources, it is better to deploy fewer but more
powerful ESs. This is because the offloaded tasks may not be perfectly uniform among PUs
since they cannot be divided into fractional pieces. Therefore, from the perspective of PUs,
fewer PUs gives rise to more uniform offloading and lower ACCT.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing — a key
technology towards 5G,” ETSI white paper, vol. 11, no. 11, pp. 1-16, Sept. 2015.

[2] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge computing
architecture: The role of MEC in the Internet of Things,” IEEE Consum. Electron Mag., vol. 5, no.
4, pp. 84-91, Oct. 2016.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation
offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628-1656, 3rd Quart. 2017.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge
computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” /EEE
Commun. Surveys Tuts., vol. 19, no. 3, pp. 1657-1681, 3rd Quart. 2017.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The
communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322-2358, 4th
Quart. 2017.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir: Dynamic resource allocation
and parallel execution in the cloud for mobile code offloading,” in Proc. IEEE INFOCOM, Mar.
2012.

[71 M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for computation-intensive
applications in mobile cloud computing,” in Proc. IEEE INFOCOM Wkshps, Apr. 2014.

[8] L. Yang, B. Liu, J. Cao, Y. Sahni, and Z. Wang, “Joint computation partitioning and resource
allocation for latency sensitive applications in mobile edge clouds,” in Proc. IEEE CLOUD, Jun.
2017.

[9] (2018, Jul.) Pexels. [Online]. Available: http://www.pexels.com/

[10] (2018, Jul.) Dlib. [Online]. Available: http://dlib.net/

Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao, Antti Yla-Jaaski, and Yusheng Ji 68

Chameleon: Latency and Resolution Aware Task Offloading for Visual-Based Assisted Driving 2019

IEEE Transactions on Vehicular Technology 9038 - 9048
DOI

10.1109/TVT.2019.2924911

Yi-Han Chiang, Tianyu Zhang, and Yusheng Ji 7

Joint Cotask-Aware Offloading and Scheduling in Mobile Edge Computing Systems 2019

IEEE Access 105008 - 105018
DOI

10.1109/ACCESS.2019.2931336

2 0 2

Jian-Jyun Hung, Wanjiun Liao, and Yi-Han Chiang

Resource Allocation for Multi-access Edge Computing with Coordinated Multi-Point Reception

IEEE Wireless Communications and Networking Conference (WCNC)

2020

Tianyu Zhangy, Yi-Han Chiang, Cristian Borcea, and Yusheng Ji

Learning-based Offloading of Tasks with Diverse Delay Sensitivities for Mobile Edge Computing

IEEE Global Communications Conference (GLOBECOM)

2019

(Zhang Tianyu)

(Zhu Chao)

