
国立情報学研究所・アーキテクチャ科学研究系・特任助教

科学研究費助成事業　　研究成果報告書

様　式　Ｃ－１９、Ｆ－１９－１、Ｚ－１９ （共通）

機関番号：

研究種目：

課題番号：

研究課題名（和文）

研究代表者

研究課題名（英文）

交付決定額（研究期間全体）：（直接経費）

６２６１５

研究活動スタート支援

2019～2018

Cotask-Aware Offloading and Scheduling in Mobile-Edge Computing Systems

Cotask-Aware Offloading and Scheduling in Mobile-Edge Computing Systems

１０８２４１９６研究者番号：

江　易翰（Chiang, Yi-Han）

研究期間：

１８Ｈ０６４７１・１９Ｋ２１５３９

年 月 日現在 ２ ７ ７

円 2,300,000

研究成果の概要（和文）：モバイルエッジコンピューティングシステムにおけるコタスク機能は、複数のサブタ
スクで構成され、すべてのサブタスクの実行が完了し、最終的な結果が返された場合にのみ完了となります。こ
の研究では、平均コタスク完了時間を最小化することを目的とする混合整数非線形計画を作成しました。この問
題を解決するために、線形計画の丸め手法に基づいてコタスクをオフロードし、最先のコタスク到着優先の規則
に従ってスケジュールを設計しました。この二つのアルゴリズムによって、共同で達成される近似比を求めるこ
とができます。設計したアルゴリズムの効果はシミュレーションとテストベッドで検証しました。

研究成果の概要（英文）：Mobile edge computing (MEC) systems provide mobile devices (MDs) with
low-latency cloud services by deploying edge servers (ESs) in the vicinity. In fact, various mobile
applications may generate cotasks, each of which is completed only if all its constituent tasks are
finished. In this research, we investigate the problem of joint cotask-aware offloading and
scheduling in MEC systems (Cool-Edge), and we formulate it as a mixed integer non-linear program
(MINLP) to minimize average cotask completion time (ACCT). To cope with the Cool-Edge problem, we
propose two low-complexity algorithms to offload cotasks based on an LP rounding technique and
schedule them according to an earliest-cotask-arrival-first rule, respectively, and we further prove
 the approximation factor jointly achieved by the two algorithms. Finally, we conduct testbed
experiments and simulations to demonstrate the effectiveness of our proposed solution, and we also
show how ACCT varies with the network environment.

研究分野： 情報科学、情報工学およびその関連分野

キーワード： モバイルエッジコンピューティング　オフロード　スケジューリング　コタスク　混合整数非線形計画

 ２版

令和

研究成果の学術的意義や社会的意義
コタスクの存在は、計算資源を効果的に活用するために、サブタスクのオフロードとスケジューリングの共同設
計を必要とします。この研究では、混合整数非線形計画として定式化し、その問題のNP困難も証明しました。そ
して、設計したコタスクのオフロードとスケジューリングのアルゴリズムに基づいて、到達した近似率はシステ
ムの計算能力と無線遅延によって決まります。テストベッドとシミュレーションの結果は、設計されたアルゴリ
ズムがコタスクをバランスよくオフロードして、ほぼ同じタイミングでスケジュールできるので、ローカル計算
とエッジ計算のトレードオフが改善されることを示し、ネットワークの計算資源を効率的に使用できました。

※科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に
ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。

様 式 Ｃ－１９、Ｆ－１９－１、Ｚ－１９（共通）
１．研究開始当初の背景

 Recent advances show that various emerging delay-sensitive applications have proliferated

and become parts of mobile devices (MDs) in recent years. However, resource-constrained

MDs (due to their limited battery lives and computing resources) may have difficulties in

performing computation-intensive jobs while meeting stringent delay requirements.

Therefore, mobile edge computing (MEC) systems [1]–[5] came into the world to resolve this

problem by deploying edge servers (ESs) on the network edge, thereby providing low-latency

cloud services to MDs.

To fully grasp the potentials of MEC systems, leveraging parallel processing that admits

jobs to be processed on independent machines is an effective way to exploit the networked

computing resources. In [6], Kosta et al. proposed a framework to facilitate on-demand

resource allocation and parallelism for managing virtual machines in the cloud. In [7], Jia et
al. designed an online task offloading algorithm for concurrent tasks, where the edge and

cloud computation can be performed in parallel. In [8], Yang et al. investigated the problem

of joint computation partitioning and resource allocation, where each user’s application is

divisible into modules that can be processed concurrently. In fact, mobile applications may

generate data-parallel jobs as cotasks: each cotask is completed only if all its constituent sub-

tasks are finished and returned to the hosting MD, and its completion time is determined by

the latest completion time among all of the constituent sub-tasks. Despite the above works

that guide us to leverage parallel processing to accelerate computation for MDs, none of them

can tell us how to properly allocate computing resources to cotasks in MEC systems.

２．研究の目的

The purpose of this research is to investigate the problem of cotask-aware offloading and

scheduling in MEC systems and show how to better utilize the networked computing

resources. To this end, we plan to take the following actions for the success of this research.

• To study how the cotask feature matters in the design of MEC offloading and scheduling.

• To formulate the Cool-Edge problem as an MINLP to minimize ACCT and show its NP-

hardness.

• To propose approximation algorithms to offload cotasks based on the LPR technique and

employ the ECAF rule for scheduling, respectively.

• To prove that the approximation factor of 4𝜅(1 + 𝜖) + 2𝜌 is achievable for any 𝜖 > 0,

where 𝜅 and 𝜌 refer to the ratios of machine computability and radio access delays,

respectively.

• To conduct testbed experiments and simulations to show the effectiveness of our proposed

solution.

３．研究の方法

In this research, we investigate the problem of cotask-aware offloading and scheduling in

MEC systems (Cool-Edge). The Cool-Edge problem can be characterized as a mixed integer

non-linear program (MINLP), the objective of which is to minimize average cotask completion

time (ACCT). Due to the NP-hardness of the Cool-Edge problem, we are motivated to design

approximation algorithms with a provable performance guarantee. Our proposed solution

consists of two consecutive phases. First, we propose the cotask-aware offloading algorithm

(denoted by CoOFLD) to minimize the makespan for each cotask, and then apply an LP

rounding (LPR) technique that explores a perfect matching from a constructed bipartite

graph. Next, we design the cotask-aware scheduling algorithm (denoted by CoSKED) to

schedule cotasks according to the earliest-cotask-arrival-first (ECAF) rule in the way that

the earliest cotask arriving at the network edge will be processed first by all ESs. We conduct

testbed experiments to assert the practicability of our proposed solution. In larger network

scales, we run simulations to demonstrate the achieved ACCT as well as the impacts of the

constitution of cotasks and the distribution of computing resources.

４．研究成果

To demonstrate the ACCT performance of our proposed solution, we consider various

offloading and scheduling schemes for comparison (see TABLE I), including CoCo (the

proposed CoOFLD and CoSKED), MC/RC (existing offloading schemes combined with

CoSKED), CS/CL (CoOFLD combined with existing scheduling schemes), and NN (the

baseline scheme with merely local computation).

・Testbed Experiments
We construct an MEC system (see FIGURE 1(a)) of 2 ESs (desktop computers with Intel

Core i76700K processors) and 2 MDs (smartphones with the Qualcomm Snapdragon 835

mobile PC platform), where each ES is equipped with a USB Wi-Fi adapter (Alfa Network

AWUS036ACH). The controller is implemented in one of the ESs, and it connects ESs through

a Wi-Fi router (Aterm WG2600HP2).

A simple application is made to capture the cotask feature in the MEC system: the mission

of each cotask is to count the detected frontal faces, and the constituent sub-tasks represent

a set of images for counting. To this end, we collect 103 images from Pexels [9] and use Dlib

[10] to detect frontal faces. The set of collected images consists of five different image qualities.

We measure the elapsed processing time (see TABLE II), which is shown to grow with image

qualities. These measurement results will further be used to set the processing time of tasks

as well as the ratio of machine computability in our simulations.

In our testbed (see FIGURE 1(a)), we randomly choose 6 images to form a cotask. FIGURE

1(b) illustrates the spatial-temporal dynamics of the two cotasks. It can be seen that CoOFLD

produces a balanced offloading while CoSKED enables the early cotask to be scheduled first,

which conforms to our designed solution. FIGURE 1(c) indicates the corresponding elapsed

time on average, from which we see that all PUs are efficiently utilized and no much waiting

time on ESs, which affirm the practicability of our proposed solution. Moreover, we observe

that the effect of shared network bandwidth (in terms of uplink and downlink delays) is not

pronounced, since the effect of shared computing resources (in terms of processing and

waiting time) plays a more dominant role in the resulting CCT.

(a) (b) (c)

FIGURE 1: Testbed environment and the measurement results under CoCo.

(a) The testbed setup. (b) The proc. time of the two cotasks. (c) The elapsed time profile.

TABLE I: The offloading and scheduling comparison schemes.

Acronyms MC RC CoCo CS CL NN

Offloading schemes MT1 RR2 CoOFLD CoOFLD CoOFLD ∅5

Scheduling schemes CoSKED CoSKED CoSKED SPT3 LPT4 ∅5
1MC: Each task is processed by the PU that minimizes its TCT.
2RR: Each MD offloads tasks in a round robin fashion.
3SPT: Each ES schedules the shortest-processing-time task first.
4LPT: Each ES schedules the longest-processing-time task first.
5∅: No MDs offload tasks and hence ESs have nothing to schedule.

TABLE II: The elapsed time for processing.

Image quality 640×360 960×540 1280×720 1600×900 1920×1080

ES’s Processing time [s] 0.1145 0.2556 0.4446 0.6966 0.9889

MD’s Processing time [s] 0.1893 0.4319 0.7572 1.1863 1.7087

Machine computability ratio 1.653 1.689 1.703 1.703 1.728

・Simulations
Here, we consider an MEC system of 5 ESs and 15 MDs. Each cotask is formed by randomly

selected 30 images, and the release time of cotasks is determined by a Poisson process with

the mean of 0.1 seconds. The uplink and downlink delays between an MD and an ES are both

uniformly distributed in the range of [0.1,0.3] seconds. The error-tolerant parameter is set to

1/108. According to the measurement results in TABLE II, we set the ratio of machine

computability to 1.7 unless stated otherwise. All results are averaged over 100 iterations.

(a) (b) (c)

FIGURE 2: The achieved ACCT and the exploitation of edge computation. (a) The elapsed

time profile. (b) The impact of the number of ESs. (c) The impact of the number of MDs.

Our proposed solution is shown to outperform the comparison schemes in terms of ACCT.

In FIGURE 2(a), we see that CoCo strikes a good balance between processing time and

waiting time. Specifically, CoCo gains from lower waiting time as compared with MC and RC,

since it intends to offload tasks to PUs in a balanced way to avoid stacking tasks on a

processing unit (PU) (since both MDs and ESs are capable of processing sub-tasks, we call

them PUs for brevity). On the other hand, CoCo enables cotasks to be scheduled in the same

order on all ESs, and hence it prevents the early completed tasks of a cotask from waiting for

the completion of other constituent sub-tasks, thereby achieving lower ACCT with respect to

CL, CS and NN. Altogether, CoCo offloads tasks in a balanced way and schedule cotasks

synchronously, and therefore it performs better than the comparison schemes.

The exploitation of edge computation provides evidences to the achieved ACCT gain.

FIGURE 2(b) and 2(c) show that the exploitation of edge computation increases with the

number of ESs and decreases with that of MDs, respectively. This is because the benefit of

edge computation is pronounced if there are not too many tasks queued on ESs. If the number

of MDs are relatively larger than that of ESs, the benefit of edge computation diminishes

since the offloaded tasks will encounter large waiting time, and hence less edge computation

is preferable. Another observation is that the exploitation of edge computation essentially

does not approach to 100%. The reason is that each hosting MD needs to wait for the last

returned task. If the hosting MD can process a small portion of its tasks locally while waiting

for the offloaded tasks to return, its CCT can be further reduced as compared with doing all

computation on the edge.

(a) (b) (c)

FIGURE 3: The achieved ACCT and the exploitation of edge computation under CoCo. (a)

The impact of the number of cotasks. (b) The impact of the number of sub- tasks. (c) The

impact of the number of ESs.

The numbers of constituent sub-tasks, cotasks and ESs have prompt effects on ACCT

performance. In FIGURE 3(a) and 3(b), we see that ACCT increases with the numbers of

constituent sub-tasks and cotasks. This is because there are more tasks to be processed, and

hence longer elapsed time for processing can be observed. In addition, as the number of tasks

per cotask increases, the exploitation of edge computation first increases and then saturates.

The saturation happens since plenty of tasks are waiting for processing on ESs, from which

we see that a balanced local and edge computation attains better ACCT.

The more the number of ESs or the higher ratio of machine computability, the lower the

achieved ACCT. In FIGURE 3(c), it can be seen that ACCT is lower whenever there are

abundant computing resources. Another notable fact is the distribution of computing

resources. Given a fixed amount of computing resources, it is better to deploy fewer but more

powerful ESs. This is because the offloaded tasks may not be perfectly uniform among PUs

since they cannot be divided into fractional pieces. Therefore, from the perspective of PUs,

fewer PUs gives rise to more uniform offloading and lower ACCT.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge computing – a key

technology towards 5G,” ETSI white paper, vol. 11, no. 11, pp. 1–16, Sept. 2015.

[2] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust, “Mobile-edge computing

architecture: The role of MEC in the Internet of Things,” IEEE Consum. Electron Mag., vol. 5, no.

4, pp. 84–91, Oct. 2016.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture and computation

offloading,” IEEE Commun. Surveys Tuts., vol. 19, no. 3, pp. 1628–1656, 3rd Quart. 2017.

[4] T. Taleb, K. Samdanis, B. Mada, H. Flinck, S. Dutta, and D. Sabella, “On multi-access edge

computing: A survey of the emerging 5G network edge cloud architecture and orchestration,” IEEE

Commun. Surveys Tuts., vol. 19, no. 3, pp. 1657–1681, 3rd Quart. 2017.

[5] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey on mobile edge computing: The

communication perspective,” IEEE Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 4th

Quart. 2017.

[6] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir: Dynamic resource allocation

and parallel execution in the cloud for mobile code offloading,” in Proc. IEEE INFOCOM, Mar.

2012.

[7] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks for computation-intensive

applications in mobile cloud computing,” in Proc. IEEE INFOCOM Wkshps, Apr. 2014.

[8] L. Yang, B. Liu, J. Cao, Y. Sahni, and Z. Wang, “Joint computation partitioning and resource

allocation for latency sensitive applications in mobile edge clouds,” in Proc. IEEE CLOUD, Jun.

2017.

[9] (2018, Jul.) Pexels. [Online]. Available: http://www.pexels.com/

[10] (2018, Jul.) Dlib. [Online]. Available: http://dlib.net/

５．主な発表論文等

〔雑誌論文〕　計2件（うち査読付論文　2件／うち国際共著　1件／うちオープンアクセス　1件）

2019年

2019年

〔学会発表〕　計2件（うち招待講演　0件／うち国際学会　2件）

2020年

2019年

 ３．学会等名

 ３．学会等名

IEEE Wireless Communications and Networking Conference (WCNC)（国際学会）

IEEE Global Communications Conference (GLOBECOM)（国際学会）

 ２．発表標題

 ２．発表標題

オープンアクセスとしている（また、その予定である） －

Resource Allocation for Multi-access Edge Computing with Coordinated Multi-Point Reception

Learning-based Offloading of Tasks with Diverse Delay Sensitivities for Mobile Edge Computing

 ４．発表年

 ４．発表年

 １．発表者名

 １．発表者名

Jian-Jyun Hung, Wanjiun Liao, and Yi-Han Chiang

Tianyu Zhangy, Yi-Han Chiang, Cristian Borcea, and Yusheng Ji

10.1109/ACCESS.2019.2931336

 ３．雑誌名 ６．最初と最後の頁

有

 オープンアクセス 国際共著

 ２．論文標題 ５．発行年
Joint Cotask-Aware Offloading and Scheduling in Mobile Edge Computing Systems

IEEE Access 105008 - 105018

 掲載論文のDOI（デジタルオブジェクト識別子） 査読の有無

 オープンアクセス 国際共著
オープンアクセスではない、又はオープンアクセスが困難 該当する

 ４．巻
Yi-Han Chiang, Tianyu Zhang, and Yusheng Ji 7

 １．著者名

Chameleon: Latency and Resolution Aware Task Offloading for Visual-Based Assisted Driving

IEEE Transactions on Vehicular Technology 9038 - 9048

 掲載論文のDOI（デジタルオブジェクト識別子） 査読の有無
10.1109/TVT.2019.2924911

 ３．雑誌名 ６．最初と最後の頁

有

 ４．巻
Chao Zhu, Yi-Han Chiang, Abbas Mehrabi, Yu Xiao, Antti Yla-Jaaski, and Yusheng Ji 68

 １．著者名

 ２．論文標題 ５．発行年

〔図書〕　計0件

〔産業財産権〕

〔その他〕

－

６．研究組織

研
究
協
力
者

朱　超

(Zhu Chao)

所属研究機関・部局・職
（機関番号）

氏名
（ローマ字氏名）
（研究者番号）

備考

研
究
協
力
者

張　天宇

(Zhang Tianyu)

