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研究成果の概要（和文）：モバイルエッジコンピューティングシステムにおけるコタスク機能は、複数のサブタ
スクで構成され、すべてのサブタスクの実行が完了し、最終的な結果が返された場合にのみ完了となります。こ
の研究では、平均コタスク完了時間を最小化することを目的とする混合整数非線形計画を作成しました。この問
題を解決するために、線形計画の丸め手法に基づいてコタスクをオフロードし、最先のコタスク到着優先の規則
に従ってスケジュールを設計しました。この二つのアルゴリズムによって、共同で達成される近似比を求めるこ
とができます。設計したアルゴリズムの効果はシミュレーションとテストベッドで検証しました。

研究成果の概要（英文）：Mobile edge computing (MEC) systems provide mobile devices (MDs) with 
low-latency cloud services by deploying edge servers (ESs) in the vicinity. In fact, various mobile 
applications may generate cotasks, each of which is completed only if all its constituent tasks are 
finished. In this research, we investigate the problem of joint cotask-aware offloading and 
scheduling in MEC systems (Cool-Edge), and we formulate it as a mixed integer non-linear program 
(MINLP) to minimize average cotask completion time (ACCT). To cope with the Cool-Edge problem, we 
propose two low-complexity algorithms to offload cotasks based on an LP rounding technique and 
schedule them according to an earliest-cotask-arrival-first rule, respectively, and we further prove
 the approximation factor jointly achieved by the two algorithms. Finally, we conduct testbed 
experiments and simulations to demonstrate the effectiveness of our proposed solution, and we also 
show how ACCT varies with the network environment.

研究分野： 情報科学、情報工学およびその関連分野

キーワード： モバイルエッジコンピューティング　オフロード　スケジューリング　コタスク　混合整数非線形計画
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研究成果の学術的意義や社会的意義
コタスクの存在は、計算資源を効果的に活用するために、サブタスクのオフロードとスケジューリングの共同設
計を必要とします。この研究では、混合整数非線形計画として定式化し、その問題のNP困難も証明しました。そ
して、設計したコタスクのオフロードとスケジューリングのアルゴリズムに基づいて、到達した近似率はシステ
ムの計算能力と無線遅延によって決まります。テストベッドとシミュレーションの結果は、設計されたアルゴリ
ズムがコタスクをバランスよくオフロードして、ほぼ同じタイミングでスケジュールできるので、ローカル計算
とエッジ計算のトレードオフが改善されることを示し、ネットワークの計算資源を効率的に使用できました。

※科研費による研究は、研究者の自覚と責任において実施するものです。そのため、研究の実施や研究成果の公表等に
ついては、国の要請等に基づくものではなく、その研究成果に関する見解や責任は、研究者個人に帰属されます。
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１．研究開始当初の背景 

  Recent advances show that various emerging delay-sensitive applications have proliferated 

and become parts of mobile devices (MDs) in recent years. However, resource-constrained 

MDs (due to their limited battery lives and computing resources) may have difficulties in 

performing computation-intensive jobs while meeting stringent delay requirements. 

Therefore, mobile edge computing (MEC) systems [1]–[5] came into the world to resolve this 

problem by deploying edge servers (ESs) on the network edge, thereby providing low-latency 

cloud services to MDs. 

To fully grasp the potentials of MEC systems, leveraging parallel processing that admits 

jobs to be processed on independent machines is an effective way to exploit the networked 

computing resources. In [6], Kosta et al. proposed a framework to facilitate on-demand 

resource allocation and parallelism for managing virtual machines in the cloud. In [7], Jia et 
al. designed an online task offloading algorithm for concurrent tasks, where the edge and 

cloud computation can be performed in parallel. In [8], Yang et al. investigated the problem 

of joint computation partitioning and resource allocation, where each user’s application is 

divisible into modules that can be processed concurrently. In fact, mobile applications may 

generate data-parallel jobs as cotasks: each cotask is completed only if all its constituent sub-

tasks are finished and returned to the hosting MD, and its completion time is determined by 

the latest completion time among all of the constituent sub-tasks. Despite the above works 

that guide us to leverage parallel processing to accelerate computation for MDs, none of them 

can tell us how to properly allocate computing resources to cotasks in MEC systems. 

 

２．研究の目的 

The purpose of this research is to investigate the problem of cotask-aware offloading and 

scheduling in MEC systems and show how to better utilize the networked computing 

resources. To this end, we plan to take the following actions for the success of this research. 

• To study how the cotask feature matters in the design of MEC offloading and scheduling. 

• To formulate the Cool-Edge problem as an MINLP to minimize ACCT and show its NP-

hardness. 

• To propose approximation algorithms to offload cotasks based on the LPR technique and 

employ the ECAF rule for scheduling, respectively. 

• To prove that the approximation factor of 4𝜅(1 + 𝜖) + 2𝜌 is achievable for any 𝜖 > 0, 

where 𝜅 and 𝜌 refer to the ratios of machine computability and radio access delays, 

respectively. 

• To conduct testbed experiments and simulations to show the effectiveness of our proposed 

solution. 

 

３．研究の方法 

In this research, we investigate the problem of cotask-aware offloading and scheduling in 

MEC systems (Cool-Edge). The Cool-Edge problem can be characterized as a mixed integer 

non-linear program (MINLP), the objective of which is to minimize average cotask completion 

time (ACCT). Due to the NP-hardness of the Cool-Edge problem, we are motivated to design 

approximation algorithms with a provable performance guarantee. Our proposed solution 

consists of two consecutive phases. First, we propose the cotask-aware offloading algorithm 

(denoted by CoOFLD) to minimize the makespan for each cotask, and then apply an LP 

rounding (LPR) technique that explores a perfect matching from a constructed bipartite 

graph. Next, we design the cotask-aware scheduling algorithm (denoted by CoSKED) to 

schedule cotasks according to the earliest-cotask-arrival-first (ECAF) rule in the way that 

the earliest cotask arriving at the network edge will be processed first by all ESs. We conduct 

testbed experiments to assert the practicability of our proposed solution. In larger network 

scales, we run simulations to demonstrate the achieved ACCT as well as the impacts of the 

constitution of cotasks and the distribution of computing resources. 

 

  



４．研究成果 

To demonstrate the ACCT performance of our proposed solution, we consider various 

offloading and scheduling schemes for comparison (see TABLE I), including CoCo (the 

proposed CoOFLD and CoSKED), MC/RC (existing offloading schemes combined with 

CoSKED), CS/CL (CoOFLD combined with existing scheduling schemes), and NN (the 

baseline scheme with merely local computation). 

 

・Testbed Experiments 
We construct an MEC system (see FIGURE 1(a)) of 2 ESs (desktop computers with Intel 

Core i76700K processors) and 2 MDs (smartphones with the Qualcomm Snapdragon 835 

mobile PC platform), where each ES is equipped with a USB Wi-Fi adapter (Alfa Network 

AWUS036ACH). The controller is implemented in one of the ESs, and it connects ESs through 

a Wi-Fi router (Aterm WG2600HP2). 

A simple application is made to capture the cotask feature in the MEC system: the mission 

of each cotask is to count the detected frontal faces, and the constituent sub-tasks represent 

a set of images for counting. To this end, we collect 103 images from Pexels [9] and use Dlib 

[10] to detect frontal faces. The set of collected images consists of five different image qualities. 

We measure the elapsed processing time (see TABLE II), which is shown to grow with image 

qualities. These measurement results will further be used to set the processing time of tasks 

as well as the ratio of machine computability in our simulations. 

In our testbed (see FIGURE 1(a)), we randomly choose 6 images to form a cotask. FIGURE 

1(b) illustrates the spatial-temporal dynamics of the two cotasks. It can be seen that CoOFLD 

produces a balanced offloading while CoSKED enables the early cotask to be scheduled first, 

which conforms to our designed solution. FIGURE 1(c) indicates the corresponding elapsed 

time on average, from which we see that all PUs are efficiently utilized and no much waiting 

time on ESs, which affirm the practicability of our proposed solution. Moreover, we observe 

that the effect of shared network bandwidth (in terms of uplink and downlink delays) is not 

pronounced, since the effect of shared computing resources (in terms of processing and 

waiting time) plays a more dominant role in the resulting CCT. 

 

   

(a) (b) (c) 

FIGURE 1: Testbed environment and the measurement results under CoCo. 

(a) The testbed setup. (b) The proc. time of the two cotasks. (c) The elapsed time profile. 

 

TABLE I: The offloading and scheduling comparison schemes. 

Acronyms MC RC CoCo CS CL NN 

Offloading schemes MT1 RR2 CoOFLD CoOFLD CoOFLD ∅5 

Scheduling schemes CoSKED CoSKED CoSKED SPT3 LPT4 ∅5 
1MC:  Each task is processed by the PU that minimizes its TCT. 
2RR:   Each MD offloads tasks in a round robin fashion. 
3SPT:  Each ES schedules the shortest-processing-time task first. 
4LPT:  Each ES schedules the longest-processing-time task first. 
5∅:  No MDs offload tasks and hence ESs have nothing to schedule. 

 

TABLE II: The elapsed time for processing. 

Image quality 640×360 960×540 1280×720 1600×900 1920×1080 

ES’s Processing time [s] 0.1145 0.2556 0.4446 0.6966 0.9889 

MD’s Processing time [s] 0.1893 0.4319 0.7572 1.1863 1.7087 

Machine computability ratio 1.653 1.689 1.703 1.703 1.728 

 

  



・Simulations 
Here, we consider an MEC system of 5 ESs and 15 MDs. Each cotask is formed by randomly 

selected 30 images, and the release time of cotasks is determined by a Poisson process with 

the mean of 0.1 seconds. The uplink and downlink delays between an MD and an ES are both 

uniformly distributed in the range of [0.1,0.3] seconds. The error-tolerant parameter is set to 

1/108. According to the measurement results in TABLE II, we set the ratio of machine 

computability to 1.7 unless stated otherwise. All results are averaged over 100 iterations. 

 

   

(a) (b) (c) 

FIGURE 2: The achieved ACCT and the exploitation of edge computation. (a) The elapsed 

time profile. (b) The impact of the number of ESs. (c) The impact of the number of MDs. 

 

Our proposed solution is shown to outperform the comparison schemes in terms of ACCT. 

In FIGURE 2(a), we see that CoCo strikes a good balance between processing time and 

waiting time. Specifically, CoCo gains from lower waiting time as compared with MC and RC, 

since it intends to offload tasks to PUs in a balanced way to avoid stacking tasks on a 

processing unit (PU) (since both MDs and ESs are capable of processing sub-tasks, we call 

them PUs for brevity). On the other hand, CoCo enables cotasks to be scheduled in the same 

order on all ESs, and hence it prevents the early completed tasks of a cotask from waiting for 

the completion of other constituent sub-tasks, thereby achieving lower ACCT with respect to 

CL, CS and NN. Altogether, CoCo offloads tasks in a balanced way and schedule cotasks 

synchronously, and therefore it performs better than the comparison schemes. 

The exploitation of edge computation provides evidences to the achieved ACCT gain. 

FIGURE 2(b) and 2(c) show that the exploitation of edge computation increases with the 

number of ESs and decreases with that of MDs, respectively. This is because the benefit of 

edge computation is pronounced if there are not too many tasks queued on ESs. If the number 

of MDs are relatively larger than that of ESs, the benefit of edge computation diminishes 

since the offloaded tasks will encounter large waiting time, and hence less edge computation 

is preferable. Another observation is that the exploitation of edge computation essentially 

does not approach to 100%. The reason is that each hosting MD needs to wait for the last 

returned task. If the hosting MD can process a small portion of its tasks locally while waiting 

for the offloaded tasks to return, its CCT can be further reduced as compared with doing all 

computation on the edge. 

 

   

(a) (b) (c) 

FIGURE 3: The achieved ACCT and the exploitation of edge computation under CoCo. (a) 

The impact of the number of cotasks. (b) The impact of the number of sub- tasks. (c) The 

impact of the number of ESs. 

 

  



The numbers of constituent sub-tasks, cotasks and ESs have prompt effects on ACCT 

performance. In FIGURE 3(a) and 3(b), we see that ACCT increases with the numbers of 

constituent sub-tasks and cotasks. This is because there are more tasks to be processed, and 

hence longer elapsed time for processing can be observed. In addition, as the number of tasks 

per cotask increases, the exploitation of edge computation first increases and then saturates. 

The saturation happens since plenty of tasks are waiting for processing on ESs, from which 

we see that a balanced local and edge computation attains better ACCT. 

The more the number of ESs or the higher ratio of machine computability, the lower the 

achieved ACCT. In FIGURE 3(c), it can be seen that ACCT is lower whenever there are 

abundant computing resources. Another notable fact is the distribution of computing 

resources. Given a fixed amount of computing resources, it is better to deploy fewer but more 

powerful ESs. This is because the offloaded tasks may not be perfectly uniform among PUs 

since they cannot be divided into fractional pieces. Therefore, from the perspective of PUs, 

fewer PUs gives rise to more uniform offloading and lower ACCT. 
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