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Synthesizing speech in many voices and styles has long been a goal in speech
research. While current state-of-the-art synthesizers can produce very natural sounding speech,
matching the voice of a target speaker when only a small amount of that speaker®s data is available
is still a challenge, especially for characteristics such as dialect. We conducted experiments to
determine what kind of speaker embeddings work best for synthesis in the voice of a new speaker, and
found that Learnable Dictionary Encoding (LDE) based speaker representations worked well, based on
a crowdsourced listening test. We also found that similarly obtaining LDE-based dialect
representations helped to improve the dialect of the synthesized speech. Finally, we explored data
augmentation techniques using both artificially modified data as well as real data from non-ideal
recording conditions, and found that including the found data in model training could further
improve naturalness of synthesized speech.
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end-to-end TTS architectures use an encoder-decoder model with attention, in contrast
to the modular approach which uses separate models for linguistic processing, acoustic
modeling, and waveform generation. While traditional approaches to TTS typically
require large amounts of high-quality, neutral-style speech from a single professional
speaker, end-to-end TTS allows for the use of more diverse sources of speech audio as
training data, opening possibilities for new TTS applications in a much wider variety
of voices and styles.

Multi-speaker modeling for TTS has long been an area of active research. At the time
when this project was proposed in 2019, an approach called decoder factorization,
wherein a speaker-specific representation such as a speaker embedding is included as
input to the decoder, was a successful approach for multi-speaker modeling for end-to-
end TTS. However, it was observed that while acoustic speaker characteristics could
be successfully captured in this manner, nuances such as dialect and characteristic
prosody were not captured. This is because the decoder handles low-level acoustic
characteristics whereas dialect and prosody are longer-range linguistic effects. Thus,
we proposed encoder factorization to better model these phenomena and to better model
speakers and their characteristic speaking styles.

Research Motivation and Goals

We had three main goals that all relate to the overall goal of improving speaker
modeling for multi-speaker TTS:

Goal 1: Encoder factorization. We hypothesize that inputting a speaker representation
at the encoder instead of or in addition to the decoder will improve speaker similarity
by better capturing the phonetic and longer-range aspects of speaker identity. We
also hypothesize that we can use state-of-the-art speaker identification models to
extract speaker embeddings that capture speaker characteristics well.

Goal 2: Dialect modeling. We aim to better capture longer-range speaker
characteristics such as dialect by creating dialect representations in a similar manner
to how the speaker representations are created and using them as additional information
about speaker characteristics to input to TTS.

Goal 3: Improved synthesis of unseen speakers. Although we originally proposed to
model level of articulation as one more characteristic of speech, we discovered during
this project that a more interesting challenge is to improve zero-shot synthesis of
unseen speakers, where the similarity of synthesized speech does not reach the level
of synthesis of the speakers that were seen during training. We hypothesize that this
is due to overfitting to seen speakers during TTS training, and that data augmentation
may mitigate this.

Research Methods

For goal 1, we trained multi-speaker end-to-end TTS models with speaker embeddings
input at three different locations: at the encoder, concatenated with the self-



attention and CBH-LSTM outputs; at the prenet to the decoder; and at the postnet. We
compared these approaches to the standard method of inputting them only at the prenet
to the decoder.

For goal 2, we trained dialect embedding models in the same manner as our speaker
embedding models and input the resulting dialect embeddings to the TTS models along
with the speaker embeddings to improve synthesis of target speakers’ particular
dialects. We also included channel labels to model the worse recording conditions and
to select the best channel settings at synthesis time.

For goal 3, we tried a synthetic data augmentation approach wherein the original TTS
training data was perturbed to create new artificial speaker identities, and also a
“ found data” augmentation approach wherein we trained the TTS model on a larger set
of speakers and dialects by adding data of lower quality than that which is typically
used for training synthesis models, and also by modeling the channel factor in order
to avoid hurting synthesis quality by training on the lower-quality data.

Research Outcomes

Goal 1: Encoder factorization using learnable dictionary encoding (LDE) embeddings
can produce natural-sounding synthesized speech with good similarity to the target
speaker (results published at ICASSP 2020)

In zero-shot speaker adaptation for end-
to-end TTS, we extract speaker embeddings
from a pre-trained speaker identification
model and input them to the TTS model as a
speaker representation. Our end-to-end
multi-speaker TTS model architecture is
based on Tacotron [1], extended with self-
attention as described in [2] to better
capture long-range dependencies. Figure
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We trained multi-speaker end-to-end TTS models with speaker embeddings input at three
different locations: concatenated with the two encoder outputs, at the prenet to the
decoder, and at the postnet. We found that inputting speaker embeddings at the encoder
in addition to the decoder prenet produced synthesized speech with better speaker
similarity for unseen speakers than inputting only to the decoder prenet, as measured
objectively by cosine similiarity to
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We also experimented with different types of LDE-based [3] speaker embeddings and
compared them with the popular x-vector representation [4]. We explored different model
settings and training criteria such as whether to use regular softmax or angular
softmax as the loss function, whether to use mean pooling only or standard deviation
pooling as well, different dimension settings for the extracted embeddings, and whether
to normalize the embeddings as a postprocessing step. We found that 512-dimensional
embeddings extracted from a model using mean pooling only, angular softmax, and no
normalization not only had the best results of the models we tried by speaker
identification metrics such as equal error rate and minimum detection cost, but that



these embeddings also produced synthesized speech with the best speaker similarity for
unseen speakers, indicating their effectiveness as speaker representations for multiple
tasks.

Goal 2: Dialect embeddings can improve dialect similarity of a target speaker (results
published at Interspeech 2020)
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enrolIment utterance, and input both to the TTS model. Figure 3 shows the TTS model
that uses both dialect and speaker embeddings. We found that the use of dialect
embeddings did help the synthesized speech to better match the perceived dialect of
the target speaker, according to a crowdsourced listening test.

Goal 3: Data augmentation using found data and channel modeling can improve synthesis
quality (results published at Interspeech 2020)

We tried two different methods of data augmentation to create more speaker variety for
training TTS models and reduce overfitting to a smaller number of training speakers.
The first approach we tried was a type of artificial speaker augmentation based on
vocal tract length perturbation (VTLP) [5] wherein we simply speed up and slow down
the training data by resampling. The resulting signals have different fundamental
frequency, speaking rate, formants, and spectra, and thus effectively sound like a
different speaker. Our second method of data augmentation was to include more data
in training by using lower-quality data collected for purposes other than TTS, such as
speech recognition. This data does not meet our usual requirements for TTS: it may
contain background noise, reverberation, or other problems. So, to avoid degrading
the quality of the output synthesized speech by training the model on this kind of
data, we included a one-hot channel label that indicates which dataset an utterance
comes from, and this label is input to Tacotron’ s postnet, which controls spectral
shaping and enhancement. At synthesis time, we choose the highest-quality channel
setting to produce clear audio. Results from a crowdsourced listening test revealed
that using the low-quality data for augmented training was effective, but contrary to
our expectations, naturalness of seen speakers was improved instead of speaker
similarity of unseen speakers. This suggests that improving speaker similarity of
unseen speakers remains a challenge.

Open-source code and audio samples:

Our open-source multi-speaker Tacotron implementation is available here:
https://github.com/nii-yamagishilab/multi-speaker-tacotron

Audio samples for multi-speaker Tacotron using different types of speaker embeddings:
https://nii-yamagishilab.github.io/samples-multi-speaker-tacotron/

Audio samples for multi-speaker Tacotron with data augmentation and dialect embeddings:
https://nii-yamagishilab.github.io/samples-multi-speaker-tacotron/augment.html

Other research outcomes are detailed in our published papers.
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Multi-speaker Tacotron Code
https://github.com/nii-yamagishilab/multi-speaker-tacotron

Audio Samples for Multi-Speaker Tacotron
https://nii-yamagishilab.github.io/samples-multi-speaker-tacotron/

Audio sample page for Interspeech 2020 paper
https://nii-yamagishilab.github.io/samples-multi-speaker-tacotron/augment.html
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